IlayMalinyak
tested locally
a79c5f2
import torch
from torch.cuda.amp import autocast
import numpy as np
import time
import os
import yaml
from matplotlib import pyplot as plt
import glob
from collections import OrderedDict
from tqdm import tqdm
import torch.distributed as dist
import pandas as pd
import xgboost as xgb
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
from torch.nn import ModuleList
# from inr import INR
# from kan import FasterKAN
class Trainer(object):
"""
A class that encapsulates the training loop for a PyTorch model.
"""
def __init__(self, model, optimizer, criterion, train_dataloader, device, world_size=1, output_dim=2,
scheduler=None, val_dataloader=None, max_iter=np.inf, scaler=None,
grad_clip=False, exp_num=None, log_path=None, exp_name=None, plot_every=None,
cos_inc=False, range_update=None, accumulation_step=1, wandb_log=False, num_quantiles=1,
update_func=lambda x: x):
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.scaler = scaler
self.grad_clip = grad_clip
self.cos_inc = cos_inc
self.output_dim = output_dim
self.scheduler = scheduler
self.train_dl = train_dataloader
self.val_dl = val_dataloader
self.train_sampler = self.get_sampler_from_dataloader(train_dataloader)
self.val_sampler = self.get_sampler_from_dataloader(val_dataloader)
self.max_iter = max_iter
self.device = device
self.world_size = world_size
self.exp_num = exp_num
self.exp_name = exp_name
self.log_path = log_path
self.best_state_dict = None
self.plot_every = plot_every
self.logger = None
self.range_update = range_update
self.accumulation_step = accumulation_step
self.wandb = wandb_log
self.num_quantiles = num_quantiles
self.update_func = update_func
# if log_path is not None:
# self.logger =SummaryWriter(f'{self.log_path}/exp{self.exp_num}')
# # print(f"logger path: {self.log_path}/exp{self.exp_num}")
# print("logger is: ", self.logger)
def get_sampler_from_dataloader(self, dataloader):
if hasattr(dataloader, 'sampler'):
if isinstance(dataloader.sampler, torch.utils.data.DistributedSampler):
return dataloader.sampler
elif hasattr(dataloader.sampler, 'sampler'):
return dataloader.sampler.sampler
if hasattr(dataloader, 'batch_sampler') and hasattr(dataloader.batch_sampler, 'sampler'):
return dataloader.batch_sampler.sampler
return None
def fit(self, num_epochs, device, early_stopping=None, only_p=False, best='loss', conf=False):
"""
Fits the model for the given number of epochs.
"""
min_loss = np.inf
best_acc = 0
train_loss, val_loss, = [], []
train_acc, val_acc = [], []
lrs = []
# self.optim_params['lr_history'] = []
epochs_without_improvement = 0
# main_proccess = (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0) or self.device == 'cpu'
main_proccess = True # change in a ddp setting
print(f"Starting training for {num_epochs} epochs")
print("is main process: ", main_proccess, flush=True)
global_time = time.time()
self.epoch = 0
for epoch in range(num_epochs):
self.epoch = epoch
start_time = time.time()
plot = (self.plot_every is not None) and (epoch % self.plot_every == 0)
t_loss, t_acc = self.train_epoch(device, epoch=epoch)
t_loss_mean = np.nanmean(t_loss)
train_loss.extend(t_loss)
global_train_accuracy, global_train_loss = self.process_loss(t_acc, t_loss_mean)
if main_proccess: # Only perform this on the master GPU
train_acc.append(global_train_accuracy.mean().item())
v_loss, v_acc = self.eval_epoch(device, epoch=epoch)
v_loss_mean = np.nanmean(v_loss)
val_loss.extend(v_loss)
global_val_accuracy, global_val_loss = self.process_loss(v_acc, v_loss_mean)
if main_proccess: # Only perform this on the master GPU
val_acc.append(global_val_accuracy.mean().item())
current_objective = global_val_loss if best == 'loss' else global_val_accuracy.mean()
improved = False
if best == 'loss':
if current_objective < min_loss:
min_loss = current_objective
improved = True
else:
if current_objective > best_acc:
best_acc = current_objective
improved = True
if improved:
model_name = f'{self.log_path}/{self.exp_num}/{self.exp_name}.pth'
print(f"saving model at {model_name}...")
torch.save(self.model.state_dict(), model_name)
self.best_state_dict = self.model.state_dict()
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
current_lr = self.optimizer.param_groups[0]['lr'] if self.scheduler is None \
else self.scheduler.get_last_lr()[0]
lrs.append(current_lr)
print(f'Epoch {epoch}, lr {current_lr}, Train Loss: {global_train_loss:.6f}, Val Loss:'\
f'{global_val_loss:.6f}, Train Acc: {global_train_accuracy.round(decimals=4).tolist()}, '\
f'Val Acc: {global_val_accuracy.round(decimals=4).tolist()},'\
f'Time: {time.time() - start_time:.2f}s, Total Time: {(time.time() - global_time)/3600} hr', flush=True)
if epoch % 10 == 0:
print(os.system('nvidia-smi'))
if epochs_without_improvement == early_stopping:
print('early stopping!', flush=True)
break
if time.time() - global_time > (23.83 * 3600):
print("time limit reached")
break
return {"num_epochs":num_epochs, "train_loss": train_loss,
"val_loss": val_loss, "train_acc": train_acc, "val_acc": val_acc, "lrs": lrs}
def process_loss(self, acc, loss_mean):
if torch.cuda.is_available() and torch.distributed.is_initialized():
global_accuracy = torch.tensor(acc).cuda() # Convert accuracy to a tensor on the GPU
torch.distributed.reduce(global_accuracy, dst=0, op=torch.distributed.ReduceOp.SUM)
global_loss = torch.tensor(loss_mean).cuda() # Convert loss to a tensor on the GPU
torch.distributed.reduce(global_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
# Divide both loss and accuracy by world size
world_size = torch.distributed.get_world_size()
global_loss /= world_size
global_accuracy /= world_size
else:
global_loss = torch.tensor(loss_mean)
global_accuracy = torch.tensor(acc)
return global_accuracy, global_loss
def load_best_model(self, to_ddp=True, from_ddp=True):
data_dir = f'{self.log_path}/exp{self.exp_num}'
# data_dir = f'{self.log_path}/exp29' # for debugging
state_dict_files = glob.glob(data_dir + '/*.pth')
print("loading model from ", state_dict_files[-1])
state_dict = torch.load(state_dict_files[-1]) if to_ddp else torch.load(state_dict_files[0],map_location=self.device)
if from_ddp:
print("loading distributed model")
# Remove "module." from keys
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.'):
while key.startswith('module.'):
key = key[7:]
new_state_dict[key] = value
state_dict = new_state_dict
# print("state_dict: ", state_dict.keys())
# print("model: ", self.model.state_dict().keys())
self.model.load_state_dict(state_dict, strict=False)
def check_gradients(self):
for name, param in self.model.named_parameters():
if param.grad is not None:
grad_norm = param.grad.norm().item()
if grad_norm > 10:
print(f"Large gradient in {name}: {grad_norm}")
def train_epoch(self, device, epoch):
"""
Trains the model for one epoch.
"""
if self.train_sampler is not None:
try:
self.train_sampler.set_epoch(epoch)
except AttributeError:
pass
self.model.train()
train_loss = []
train_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.train_dl)
for i, batch in enumerate(pbar):
if self.optimizer is not None:
self.optimizer.zero_grad()
loss, acc , y = self.train_batch(batch, i, device)
train_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"train_acc: {acc}, train_loss: {loss.item()}")
if i > self.max_iter:
break
print("number of train_accs: ", train_acc)
return train_loss, all_accs/total
def train_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
# features = torch.stack(batch['audio']['features']).to(device).float()
# cwt = batch['audio']['cwt_mag']
x = x.to(device).float()
fft = fft.to(device).float()
# cwt = cwt.to(device).float()
y = y.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
loss.backward()
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step()
# get predicted classes
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def eval_epoch(self, device, epoch):
"""
Evaluates the model for one epoch.
"""
self.model.eval()
val_loss = []
val_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.val_dl)
for i,batch in enumerate(pbar):
loss, acc, y = self.eval_batch(batch, i, device)
val_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"val_acc: {acc}, val_loss: {loss.item()}")
if i > self.max_iter:
break
return val_loss, all_accs/total
def eval_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
# features = torch.stack(batch['audio']['features']).to(device).float()
# features = batch['audio']['features_arr'].to(device).float()
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred.squeeze(), y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def predict(self, test_dataloader, device):
"""
Returns the predictions of the model on the given dataset.
"""
self.model.eval()
total = 0
all_accs = 0
predictions = []
true_labels = []
pbar = tqdm(test_dataloader)
for i,batch in enumerate(pbar):
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
# features = batch['audio']['features']
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
predictions.extend(cls_pred.cpu().numpy())
true_labels.extend(y.cpu().numpy().astype(np.int64))
all_accs += acc
total += len(y)
pbar.set_description("acc: {:.4f}".format(acc))
if i > self.max_iter:
break
return predictions, true_labels, all_accs/total
class INRDatabase:
"""Database to store and manage INRs persistently."""
def __init__(self, save_dir='./inr_database'):
self.inrs = {} # Maps sample_id -> INR
self.optimizers = {} # Maps sample_id -> optimizer state
self.save_dir = save_dir
os.makedirs(save_dir, exist_ok=True)
def get_or_create_inr(self, sample_id, create_fn, device):
"""Get existing INR or create new one if not exists."""
if sample_id not in self.inrs:
# Create new INR
inr = create_fn().to(device)
optimizer = torch.optim.Adam(inr.parameters())
self.inrs[sample_id] = inr
self.optimizers[sample_id] = optimizer
return self.inrs[sample_id], self.optimizers[sample_id]
def set_inr(self, sample_id, inr, optimizer):
self.inrs[sample_id] = inr
self.optimizers[sample_id] = optimizer
def save_state(self):
"""Save all INRs and optimizer states to disk."""
state = {
'inrs': {
sample_id: inr.state_dict()
for sample_id, inr in self.inrs.items()
},
'optimizers': {
sample_id: opt.state_dict()
for sample_id, opt in self.optimizers.items()
}
}
torch.save(state, os.path.join(self.save_dir, 'inr_database.pt'))
def load_state(self, create_fn, device):
"""Load INRs and optimizer states from disk."""
path = os.path.join(self.save_dir, 'inr_database.pt')
if os.path.exists(path):
state = torch.load(path, map_location=device)
# Restore INRs
for sample_id, inr_state in state['inrs'].items():
inr = create_fn().to(device)
inr.load_state_dict(inr_state)
self.inrs[sample_id] = inr
# Restore optimizers
for sample_id, opt_state in state['optimizers'].items():
optimizer = torch.optim.Adam(self.inrs[sample_id].parameters())
optimizer.load_state_dict(opt_state)
self.optimizers[sample_id] = optimizer
class INRTrainer(Trainer):
def __init__(self, hidden_features=128, n_layers=3, in_features=1, out_features=1,
num_steps=5000, lr=1e-3, inr_criterion=torch.nn.MSELoss(), save_dir='./inr_database', *args, **kwargs):
super().__init__(*args, **kwargs)
self.hidden_features = hidden_features
self.n_layers = n_layers
self.in_features = in_features
self.out_features = out_features
self.num_steps = num_steps
self.lr = lr
self.inr_criterion = inr_criterion
# Initialize INR database
self.db = INRDatabase(save_dir)
# Load existing INRs if available
self.db.load_state(self.create_inr, self.device)
def create_inr(self):
"""Factory function to create new INR instances."""
return INR(
hidden_features=self.hidden_features,
n_layers=self.n_layers,
in_features=self.in_features,
out_features=self.out_features
)
def create_kan(self):
return FasterKAN(layers_hidden=[self.in_features] + [self.hidden_features] * (self.n_layers) + [self.out_features],)
def get_sample_id(self, batch, idx):
"""Extract unique identifier for a sample in the batch.
Override this method based on your data structure."""
# Example: if your batch contains unique IDs
if 'id' in batch:
return batch['id'][idx]
# Fallback: create hash from the sample data
sample_data = batch['audio']['array'][idx]
return hash(sample_data.cpu().numpy().tobytes())
def train_inr(self, optimizer, model, coords, values, num_iters=10, plot=False):
# pbar = tqdm(range(num_iters))
for _ in range(num_iters):
optimizer.zero_grad()
pred_values = model(coords.to(self.device)).float()
loss = self.inr_criterion(pred_values.squeeze(), values)
loss.backward()
optimizer.step()
# pbar.set_description(f'loss: {loss.item()}')
if plot:
plt.plot(values.cpu().detach().numpy())
plt.plot(pred_values.cpu().detach().numpy())
plt.title(loss.item())
plt.show()
return model, optimizer
def train_batch(self, batch, batch_idx, device):
"""Train INRs for each sample in batch, persisting progress."""
coords = batch['audio']['coords'].to(device) # [B, N, 1]
fft = batch['audio']['fft_mag'].to(device) # [B, N]
audio = batch['audio']['array'].to(device) # [B, N]
y = batch['label'].to(device).float()
batch_size = coords.shape[0]
values = audio
batch_losses = []
batch_optimizers = []
batch_inrs = []
batch_weights = tuple()
batch_biases = tuple()
# Training loop
# pbar = tqdm(range(self.num_steps), desc="Training INRs")
plot = batch_idx == 0
for i in range(batch_size):
sample_id = self.get_sample_id(batch, i)
inr, optimizer = self.db.get_or_create_inr(sample_id, self.create_inr, device)
inr, optimizer = self.train_inr(optimizer, inr, coords[i], values[i])
self.db.set_inr(sample_id, inr, optimizer)
# pred_values = inr(coords[i]).squeeze()
# batch_losses.append(self.inr_criterion(pred_values, values[i]))
# batch_optimizers.append(optimizer)
state_dict = inr.state_dict()
weights = tuple(
[v.permute(1, 0).unsqueeze(-1).unsqueeze(0).to(device) for w, v in state_dict.items() if "weight" in w]
)
biases = tuple([v.unsqueeze(-1).unsqueeze(0).to(device) for w, v in state_dict.items() if "bias" in w])
if not len(batch_weights):
batch_weights = weights
else:
batch_weights = tuple(
[torch.cat((weights[i], batch_weights[i]), dim=0) for i in range(len(weights))]
)
if not len(batch_biases):
batch_biases = biases
else:
batch_biases = tuple(
[torch.cat((biases[i], batch_biases[i]), dim=0) for i in range(len(biases))]
)
# loss_preds = torch.tensor([0])
# acc = 0
y_pred = self.model(inputs=(batch_weights, batch_biases)).squeeze()
loss_preds = self.criterion(y_pred, y)
self.optimizer.zero_grad()
loss_preds.backward()
self.optimizer.step()
# for i in range(batch_size):
# batch_optimizers[i].zero_grad()
# batch_losses[i] += loss_preds
# batch_losses[i].backward()
# batch_optimizers[i].step()
if batch_idx % 10 == 0: # Adjust frequency as needed
self.db.save_state()
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss_preds, acc, y
def eval_batch(self, batch, batch_idx, device):
"""Evaluate INRs for each sample in batch."""
coords = batch['audio']['coords'].to(device)
fft = batch['audio']['fft_mag'].to(device)
audio = batch['audio']['array'].to(device)
batch_size = coords.shape[0]
# values = torch.cat((
# audio.unsqueeze(-1),
# fft.unsqueeze(-1)
# ), dim=-1)
values = audio
# Get INRs for each sample
batch_inrs = []
for i in range(batch_size):
sample_id = self.get_sample_id(batch, i)
inr, _ = self.db.get_or_create_inr(sample_id, self.create_inr, device)
batch_inrs.append(inr)
# Evaluate
with torch.no_grad():
all_preds = torch.stack([
inr(coords[i])
for i, inr in enumerate(batch_inrs)
])
batch_losses = torch.stack([
self.criterion(all_preds[i].squeeze(), values[i])
for i in range(batch_size)
])
avg_loss = batch_losses.mean().item()
acc = torch.zeros(self.output_dim, device=device)
y = values
return torch.tensor(avg_loss), acc, y
def verify_parallel_gradient_isolation(trainer, batch_size=4, sequence_length=1000):
"""
Verify that gradients remain isolated in parallel training.
"""
device = trainer.device
# Create test data
coords = torch.linspace(0, 1, sequence_length).unsqueeze(-1) # [N, 1]
coords = coords.unsqueeze(0).repeat(batch_size, 1, 1) # [B, N, 1]
# Create synthetic signals
targets = torch.stack([
torch.sin(2 * torch.pi * (i + 1) * coords.squeeze(-1))
for i in range(batch_size)
]).to(device)
# Create batch of INRs
inrs = trainer.create_batch_inrs()
# Store initial parameters
initial_params = [{name: param.clone().detach()
for name, param in inr.named_parameters()}
for inr in inrs]
# Create mock batch
batch = {
'audio': {
'coords': coords.to(device),
'fft_mag': targets.clone(),
'array': targets.clone()
}
}
# Run one training step
trainer.train_batch(batch, 0, device)
# Verify parameter changes
isolation_verified = True
for i, inr in enumerate(inrs):
params_changed = False
for name, param in inr.named_parameters():
if not torch.allclose(param, initial_params[i][name]):
params_changed = True
# Verify that the changes are unique to this INR
for j, other_inr in enumerate(inrs):
if i != j:
other_param = dict(other_inr.named_parameters())[name]
if not torch.allclose(other_param, initial_params[j][name]):
isolation_verified = False
print(f"Warning: Parameter {name} of INR {j} changed when only INR {i} should have changed")
return isolation_verified
class XGBoostTrainer():
def __init__(self, model_args, train_ds, val_ds, test_ds):
self.train_ds = train_ds
self.test_ds = test_ds
print("creating train dataframe...")
self.x_train, self.y_train = self.create_dataframe(train_ds, save_name='train')
print("creating validation dataframe...")
self.x_val, self.y_val = self.create_dataframe(val_ds, save_name='val')
print("creating test dataframe...")
self.x_test, self.y_test = self.create_dataframe(test_ds, save_name='test')
# Convert the data to DMatrix format
self.dtrain = xgb.DMatrix(self.x_train, label=self.y_train)
self.dval = xgb.DMatrix(self.x_val, label=self.y_val)
self.dtest = xgb.DMatrix(self.x_test, label=self.y_test)
# Model initialization
self.model_args = model_args
self.model = xgb.XGBClassifier(**model_args)
def create_dataframe(self, ds, save_name='train'):
try:
df = pd.read_csv(f"tasks/utils/dfs/{save_name}.csv")
except FileNotFoundError:
data = []
# Iterate over the dataset
pbar = tqdm(enumerate(ds))
for i, batch in pbar:
label = batch['label']
features = batch['audio']['features']
# Flatten the nested dictionary structure
feature_dict = {'label': label}
for k, v in features.items():
if isinstance(v, dict):
for sub_k, sub_v in v.items():
feature_dict[f"{k}_{sub_k}"] = sub_v[0].item() # Aggregate (e.g., mean)
data.append(feature_dict)
# Convert to DataFrame
df = pd.DataFrame(data)
print(os.getcwd())
df.to_csv(f"tasks/utils/dfs/{save_name}.csv", index=False)
X = df.drop(columns=['label'])
y = df['label']
return X, y
def fit(self):
# Train using the `train` method with early stopping
params = {
'objective': 'binary:logistic',
'eval_metric': 'logloss',
**self.model_args
}
evals_result = {}
num_boost_round = 1000 # Set a large number of boosting rounds
# Watchlist to monitor performance on train and validation data
watchlist = [(self.dtrain, 'train'), (self.dval, 'eval')]
# Train the model
self.model = xgb.train(
params,
self.dtrain,
num_boost_round=num_boost_round,
evals=watchlist,
early_stopping_rounds=10, # Early stopping after 10 rounds with no improvement
evals_result=evals_result,
verbose_eval=True # Show evaluation results for each iteration
)
return evals_result
def train_xgboost_in_batches(self, dataloader, eval_metric="logloss"):
evals_result = {}
for i, batch in enumerate(dataloader):
# Convert batch data to NumPy arrays
X_batch = torch.cat([batch[key].view(batch[key].size(0), -1) for key in batch if key != "label"],
dim=1).numpy()
y_batch = batch["label"].numpy()
# Create DMatrix for XGBoost
dtrain = xgb.DMatrix(X_batch, label=y_batch)
# Use `train` with each batch
self.model = xgb.train(
params,
dtrain,
num_boost_round=1000, # Use a large number of rounds
evals=[(self.dval, 'eval')],
eval_metric=eval_metric,
early_stopping_rounds=10,
evals_result=evals_result,
verbose_eval=False # Avoid printing every iteration
)
# Optionally print progress
if i % 10 == 0:
print(f"Batch {i + 1}/{len(dataloader)} processed.")
return evals_result
def predict(self):
# Predict probabilities for class 1
y_prob = self.model.predict(self.dtest, output_margin=False)
# Convert probabilities to binary labels (0 or 1) using a threshold (e.g., 0.5)
y_pred = (y_prob >= 0.5).astype(int)
# Evaluate performance
accuracy = accuracy_score(self.y_test, y_pred)
roc_auc = roc_auc_score(self.y_test, y_prob)
print(f'Accuracy: {accuracy:.4f}')
print(f'ROC AUC Score: {roc_auc:.4f}')
print(classification_report(self.y_test, y_pred))
def plot_results(self, evals_result):
train_logloss = evals_result["train"]["logloss"]
val_logloss = evals_result["eval"]["logloss"]
iterations = range(1, len(train_logloss) + 1)
# Plot
plt.figure(figsize=(8, 5))
plt.plot(iterations, train_logloss, label="Train LogLoss", color="blue")
plt.plot(iterations, val_logloss, label="Validation LogLoss", color="red")
plt.xlabel("Boosting Round (Iteration)")
plt.ylabel("Log Loss")
plt.title("Training and Validation Log Loss over Iterations")
plt.legend()
plt.grid()
plt.show()