Spaces:
Build error
Build error
struct random_normal_distribution { | |
std::mt19937 gen; | |
std::normal_distribution<float> rd; | |
float min; | |
float max; | |
}; | |
struct random_uniform_distribution { | |
std::mt19937 gen; | |
std::uniform_real_distribution<float> rd; | |
}; | |
struct train_state * init_train_state() { | |
struct train_state * state = new struct train_state; | |
state->train_its = 0; | |
state->train_samples = 0; | |
state->train_tokens = 0; | |
state->train_epochs = 0; | |
state->shuffle_samples_hash = 0; | |
state->shuffle_sample_count = 0; | |
state->shuffle_next_sample = 0; | |
state->shuffle_rng_state_current = ""; | |
state->shuffle_rng_state_next = ""; | |
state->opt = new struct ggml_opt_context; | |
state->opt->ctx = NULL; | |
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); | |
state->opt->loss_after = 0.0f; | |
return state; | |
} | |
void free_train_state(struct train_state * state) { | |
delete state->opt; | |
delete state; | |
} | |
struct random_normal_distribution * init_random_normal_distribution( | |
int seed, float mean, float std, float min, float max | |
) { | |
struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution)); | |
rnd->gen = std::mt19937(seed); | |
rnd->rd = std::normal_distribution<float>{mean, std}; | |
rnd->min = min; | |
rnd->max = max; | |
return rnd; | |
} | |
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) { | |
struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution)); | |
rnd->gen = std::mt19937(seed); | |
rnd->rd = std::uniform_real_distribution<float>{min, max}; | |
return rnd; | |
} | |
void free_random_normal_distribution (struct random_normal_distribution * rnd) { | |
free(rnd); | |
} | |
void free_random_uniform_distribution(struct random_uniform_distribution * rnd) { | |
free(rnd); | |
} | |
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { | |
float scale = 1.0f; // xavier | |
switch (tensor->n_dims) { | |
case 1: | |
scale /= sqrtf((float) tensor->ne[0]); | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); | |
*dst = scale * frand_normal(rnd); | |
} | |
break; | |
case 2: | |
scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
*dst = scale * frand_normal(rnd); | |
} | |
} | |
break; | |
case 3: | |
scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); | |
*dst = scale * frand_normal(rnd); | |
} | |
} | |
} | |
break; | |
case 4: | |
scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); | |
for (int i3 = 0; i3 < tensor->ne[3]; i3++) { | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); | |
*dst = scale * frand_normal(rnd); | |
} | |
} | |
} | |
} | |
break; | |
default: | |
die("Unsupported tensor->n_dims"); | |
}; | |
return tensor; | |
} | |
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { | |
switch (tensor->n_dims) { | |
case 1: | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); | |
*dst = frand_uniform(rnd); | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
*dst = frand_uniform(rnd); | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); | |
*dst = frand_uniform(rnd); | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < tensor->ne[3]; i3++) { | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); | |
*dst = frand_uniform(rnd); | |
} | |
} | |
} | |
} | |
break; | |
default: | |
die("Unsupported tensor->n_dims"); | |
}; | |
return tensor; | |
} | |
float frand() { | |
return (float)rand()/((float)(RAND_MAX) + 1.0f); | |
} | |
float frand_normal(struct random_normal_distribution * rnd) { | |
return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); | |
} | |
float frand_uniform(struct random_uniform_distribution * rnd) { | |
return rnd->rd(rnd->gen); | |
} | |
int clamp(const int v, const int min, const int max) { | |
return ((v < min) ? (min) : (v > max) ? (max) : v); | |
} | |
float fclamp(const float v, const float min, const float max) { | |
return ((v < min) ? (min) : (v > max) ? (max) : v); | |
} | |
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { | |
GGML_ASSERT(tensor->n_dims == 1); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
} | |
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { | |
GGML_ASSERT(tensor->n_dims == 2); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
} | |
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { | |
GGML_ASSERT(tensor->n_dims == 3); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
GGML_ASSERT(tensor->ne[2] == ne2); | |
} | |
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { | |
GGML_ASSERT(tensor->n_dims == 4); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
GGML_ASSERT(tensor->ne[2] == ne2); | |
GGML_ASSERT(tensor->ne[3] == ne3); | |
} | |
int64_t get_example_targets_batch( | |
struct llama_context * lctx, | |
struct ggml_tensor * tokens_input, | |
struct ggml_tensor * target_probs, | |
int64_t example_id, | |
const size_t * samples_offs, | |
const size_t * samples_begin, | |
const size_t * samples_size, | |
size_t samples_count, | |
const llama_token * train_data, | |
size_t n_train_data, | |
bool separate_with_eos, | |
bool separate_with_bos, | |
bool fill_with_next_samples, | |
bool sample_random_offsets | |
) { | |
GGML_ASSERT(samples_count > 0); | |
GGML_ASSERT(tokens_input->n_dims == 2); | |
GGML_ASSERT(target_probs->n_dims == 3); | |
int64_t n_vocab = target_probs->ne[0]; | |
int64_t n_tokens = tokens_input->ne[0]; | |
int64_t n_batch = tokens_input->ne[1]; | |
GGML_ASSERT(n_vocab == target_probs->ne[0]); | |
GGML_ASSERT(n_tokens == target_probs->ne[1]); | |
GGML_ASSERT(n_batch == target_probs->ne[2]); | |
int64_t used_samples = 0; | |
ggml_set_f32(target_probs, 0.0f); | |
llama_token bos = llama_token_bos(lctx); | |
llama_token eos = llama_token_eos(lctx); | |
// printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); | |
for (int k=0; k<n_batch; ++k) { | |
// printf("%s: batch %d\n", __func__, k); | |
size_t sample_idx = (example_id + used_samples) % samples_count; | |
size_t sample_offs = sample_random_offsets ? samples_offs[sample_idx] : 0; | |
size_t sample_begin = samples_begin[sample_idx]; | |
size_t sample_size = samples_size[sample_idx]; | |
++used_samples; | |
// printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample); | |
GGML_ASSERT(sample_begin+sample_size-1 < n_train_data); | |
ggml_set_i32_nd(tokens_input, 0, k, 0, 0, bos); | |
bool sample_separation_eos = !separate_with_eos; | |
bool sample_separation_bos = !separate_with_bos; | |
for (int64_t i=0; i<n_tokens; ++i) { | |
llama_token token = eos; | |
if (sample_offs >= sample_size && fill_with_next_samples) { | |
if (!sample_separation_eos) { | |
// insert eos token to separate samples | |
sample_separation_eos = true; | |
} else if (!sample_separation_bos) { | |
// insert bos token to separate samples | |
sample_separation_bos = true; | |
token = bos; | |
} else { | |
// sample separation is done, continue with next sample | |
sample_separation_eos = !separate_with_eos; | |
sample_separation_bos = !separate_with_bos; | |
sample_offs = 0; | |
sample_idx = (example_id + used_samples) % samples_count; | |
sample_begin = samples_begin[sample_idx]; | |
sample_size = samples_size[sample_idx]; | |
++used_samples; | |
} | |
} | |
// note: no else-if here | |
if (sample_offs < sample_size) { | |
token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1)); | |
++sample_offs; | |
} | |
ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f); | |
if (i+1<n_tokens) { | |
ggml_set_i32_nd(tokens_input, (int) (i + 1), (int) k, 0, 0, token); | |
} | |
} | |
} | |
return used_samples; | |
} | |
void mt19937_set_state(std::mt19937& rng, const std::string& rng_state) { | |
std::stringstream s_rng_state; | |
s_rng_state.imbue(std::locale::classic()); | |
s_rng_state.exceptions(std::stringstream::failbit); | |
s_rng_state.str(rng_state); | |
s_rng_state >> rng; | |
} | |
std::string mt19937_get_state(const std::mt19937& rng) { | |
std::stringstream s_rng_state; | |
s_rng_state.imbue(std::locale::classic()); | |
s_rng_state << rng; | |
return s_rng_state.str(); | |
} | |
std::string mt19937_seed_to_state(unsigned seed) { | |
std::mt19937 rng(seed); | |
return mt19937_get_state(rng); | |
} | |
std::string shuffle_samples( | |
const std::string & rng_state, | |
size_t * shuffled_offs, | |
size_t * shuffled_begins, | |
size_t * shuffled_sizes, | |
const size_t * begins, | |
const size_t * sizes, | |
size_t count) { | |
if (count == 0) return rng_state; | |
std::mt19937 rng; | |
mt19937_set_state(rng, rng_state); | |
// sort indices by random value for each index | |
std::vector<size_t> idcs; | |
{ | |
std::vector<unsigned> rnd; | |
idcs.resize(count); | |
rnd.resize(count); | |
for (unsigned i=0; i<count; ++i) { | |
idcs[i] = i; | |
rnd[i] = rng(); | |
} | |
std::sort(idcs.begin(), idcs.end(), [&rnd](size_t a, size_t b){ | |
// stable sort for reproducibility | |
return (rnd[a] == rnd[b]) ? (a < b) : (rnd[a] < rnd[b]); | |
}); | |
} | |
// create random offsets | |
for (unsigned i=0; i<count; ++i) { | |
shuffled_offs[i] = (size_t) ((sizes[idcs[i]] - 1) * ((double) rng() / (double) (rng.max()-1))); | |
} | |
// reorder begins and sizes by sorted indices | |
for (unsigned i=0; i<count; ++i) { | |
shuffled_begins[i] = begins[idcs[i]]; | |
} | |
for (unsigned i=0; i<count; ++i) { | |
shuffled_sizes[i] = sizes[idcs[i]]; | |
} | |
return mt19937_get_state(rng); | |
} | |
size_t hash_combine(size_t h1, size_t h2) { | |
return h1 ^ (h2 << 1); | |
} | |
size_t compute_samples_hash(const char* fn, const size_t* samples_begin, const size_t* samples_size, size_t sample_count) { | |
std::hash<std::string> h_string; | |
std::hash<unsigned long long> h_ull; | |
size_t h = h_string(std::string(fn)); | |
h = hash_combine(h, h_ull((unsigned long long) sample_count)); | |
for (size_t i=0; i< sample_count; ++i) { | |
h = hash_combine(h, h_ull((unsigned long long) samples_begin[i])); | |
h = hash_combine(h, h_ull((unsigned long long) samples_size[i])); | |
} | |
return h; | |
} | |
std::string replace_str(const char * s, const char * needle, const char * replacement) { | |
std::string str = s; | |
size_t pos = str.find(needle); | |
if (pos != std::string::npos) { | |
str.replace(pos, strlen(needle), replacement); | |
} | |
return str; | |
} | |
void print_duration(double fmillis) { | |
if (fmillis < 1000.0f) { | |
printf("%.1fms", (float) fmillis); | |
return; | |
} | |
const int64_t one_sec = 1000; | |
const int64_t one_min = one_sec * 60; | |
const int64_t one_hour = one_min * 60; | |
const int64_t one_day = one_hour * 24; | |
int64_t millis = (int64_t) fmillis; | |
int64_t days = millis/one_day; | |
int64_t hours = (millis - days*one_day)/one_hour; | |
int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min; | |
int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec; | |
// to print int64_t either cast to (long long int) or use macro PRId64 from <inttypes.h> | |
if (days > 0) { | |
printf("%lldd ", (long long int) days); | |
} | |
printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds); | |
} | |
float cosine_decay(int64_t step, int64_t decay_steps, float minimum) { | |
if (step > decay_steps) { | |
step = decay_steps; | |
} | |
const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); | |
const float decay = (1 - minimum)*cosine_decay + minimum; | |
return decay; | |
} | |
float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) { | |
while (step > decay_steps) { | |
step -= decay_steps; | |
decay_steps = (int64_t) (restart_step_mult * decay_steps); | |
} | |
return cosine_decay(step, decay_steps, minimum); | |
} | |
float learning_schedule( | |
int64_t step, | |
int64_t warmup_steps, | |
int64_t cos_decay_steps, | |
float learning_rate, | |
float overall_minimum, | |
float cos_decay_minimum, | |
float cos_decay_restart_step_mult, | |
bool enable_restart) { | |
float result = | |
(step < warmup_steps) | |
? (float) step / (float) warmup_steps | |
: enable_restart | |
? cosine_decay_restart( | |
step - warmup_steps, | |
cos_decay_steps, | |
cos_decay_minimum, | |
cos_decay_restart_step_mult) | |
: cosine_decay( | |
step, | |
cos_decay_steps, | |
cos_decay_minimum); | |
float min = overall_minimum / learning_rate; | |
result = min + result * (1.0f - min); | |
return result; | |
} | |
static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { | |
GGML_ASSERT(a != NULL); | |
GGML_ASSERT(b != NULL); | |
GGML_ASSERT(a->type == b->type); | |
GGML_ASSERT(ggml_are_same_shape(a, b)); | |
GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); | |
return true; | |
} | |
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { | |
if (dst == NULL) { | |
return; | |
} | |
struct ggml_tensor * t = ggml_get_tensor(ctx, name); | |
GGML_ASSERT(are_same_layout(dst, t)); | |
memcpy(dst->data, t->data, ggml_nbytes(t)); | |
if (strlen(ggml_get_name(dst)) == 0) { | |
ggml_set_name(dst, name); | |
} | |
} | |
// gguf constants | |
static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; | |
static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; | |
static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; | |
static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; | |
static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; | |
static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; | |
static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; | |
static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; | |
static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; | |
static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; | |
static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; | |
static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; | |
static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; | |
static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; | |
static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; | |
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; | |
static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; | |
static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; | |
static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; | |
static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; | |
static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count"; | |
static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash"; | |
static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state"; | |
static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count"; | |
static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample"; | |
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { | |
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read | |
uint32_t file_version; | |
GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); | |
GGML_ASSERT(file_version == 0); | |
GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); | |
GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); | |
GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); | |
uint64_t nx; | |
GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); | |
opt->nx = (size_t) nx; | |
// don't call ggml_opt_init until optimizer type and optimizer specific parameters are know | |
std::string opt_type; | |
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); | |
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { | |
opt->params.type = GGML_OPT_ADAM; | |
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); | |
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); | |
GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); | |
ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); | |
copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); | |
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); | |
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); | |
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { | |
opt->params.type = GGML_OPT_LBFGS; | |
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); | |
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); | |
GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); | |
GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); | |
GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); | |
GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); | |
GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); | |
ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); | |
copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); | |
copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); | |
copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); | |
copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); | |
copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); | |
copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); | |
copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); | |
copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); | |
copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); | |
copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); | |
} else { | |
die("unknown optimizer type\n"); | |
} | |
} | |
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); | |
gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); | |
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); | |
switch (opt->params.type) { | |
case GGML_OPT_ADAM: | |
{ | |
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); | |
ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); | |
ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); | |
if (opt->adam.pf) { | |
ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); | |
} | |
gguf_add_tensor(fctx, opt->adam.m); | |
gguf_add_tensor(fctx, opt->adam.v); | |
if (opt->adam.pf) { | |
gguf_add_tensor(fctx, opt->adam.pf); | |
} | |
} break; | |
case GGML_OPT_LBFGS: | |
{ | |
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); | |
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); | |
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); | |
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); | |
ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); | |
ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); | |
ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); | |
ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); | |
ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); | |
if (opt->lbfgs.pf) { | |
ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); | |
} | |
ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); | |
ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); | |
ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); | |
ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); | |
gguf_add_tensor(fctx, opt->lbfgs.x); | |
gguf_add_tensor(fctx, opt->lbfgs.xp); | |
gguf_add_tensor(fctx, opt->lbfgs.g); | |
gguf_add_tensor(fctx, opt->lbfgs.gp); | |
gguf_add_tensor(fctx, opt->lbfgs.d); | |
if (opt->lbfgs.pf) { | |
gguf_add_tensor(fctx, opt->lbfgs.pf); | |
} | |
gguf_add_tensor(fctx, opt->lbfgs.lmal); | |
gguf_add_tensor(fctx, opt->lbfgs.lmys); | |
gguf_add_tensor(fctx, opt->lbfgs.lms); | |
gguf_add_tensor(fctx, opt->lbfgs.lmy); | |
} break; | |
} | |
} | |
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) { | |
if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) { | |
return false; | |
} | |
uint32_t file_version; | |
GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); | |
GGML_ASSERT(file_version <= 1); | |
if (file_version == 0) { | |
GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); | |
GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); | |
GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); | |
} else if (file_version == 1) { | |
GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT); | |
GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT); | |
GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT); | |
GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT); | |
GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH); | |
GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE); | |
GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT); | |
GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE); | |
} | |
load_opt_context_gguf(fctx, f_ggml_ctx, train->opt); | |
return true; | |
} | |
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) { | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash); | |
gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str()); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count); | |
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample); | |
save_opt_context_gguf(fctx, train->opt); | |
} | |
struct llama_file { | |
// use FILE * so we don't have to re-open the file to mmap | |
FILE * fp; | |
size_t size; | |
llama_file(const char * fname, const char * mode) { | |
fp = std::fopen(fname, mode); | |
if (fp == NULL) { | |
size = 0; | |
} else { | |
seek(0, SEEK_END); | |
size = tell(); | |
seek(0, SEEK_SET); | |
} | |
} | |
size_t tell() const { | |
__int64 ret = _ftelli64(fp); | |
long ret = std::ftell(fp); | |
GGML_ASSERT(ret != -1); // this really shouldn't fail | |
return (size_t) ret; | |
} | |
void seek(size_t offset, int whence) { | |
int ret = _fseeki64(fp, (__int64) offset, whence); | |
int ret = std::fseek(fp, (long) offset, whence); | |
GGML_ASSERT(ret == 0); // same | |
} | |
void read_raw(void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
std::size_t ret = std::fread(ptr, size, 1, fp); | |
if (ferror(fp)) { | |
die_fmt("read error: %s", strerror(errno)); | |
} | |
if (ret != 1) { | |
die("unexpectedly reached end of file"); | |
} | |
} | |
std::uint32_t read_u32() { | |
std::uint32_t ret; | |
read_raw(&ret, sizeof(ret)); | |
return ret; | |
} | |
std::string read_string(std::uint32_t len) { | |
std::vector<char> chars(len); | |
read_raw(chars.data(), len); | |
return std::string(chars.data(), len); | |
} | |
void write_raw(const void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
size_t ret = std::fwrite(ptr, size, 1, fp); | |
if (ret != 1) { | |
die_fmt("write error: %s", strerror(errno)); | |
} | |
} | |
void write_u32(std::uint32_t val) { | |
write_raw(&val, sizeof(val)); | |
} | |
~llama_file() { | |
if (fp) { | |
std::fclose(fp); | |
} | |
} | |
}; | |
static size_t utf8_len(char src) { | |
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; | |
uint8_t highbits = static_cast<uint8_t>(src) >> 4; | |
return lookup[highbits]; | |
} | |
// mark each byte with its utf8 unit number. | |
// returns the number of utf8 characters. | |
// e.g. when bytes == '\x61\xD0\xB0\x62', | |
// then utf8_units will become [0,0,1,0] | |
// utf8_nunits will become [1,2,2,1] and 3 is returned. | |
// bytes where utf8_units is zero, are the begin of an utf8 character. | |
static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) { | |
size_t offs = 0; | |
size_t count_utf8 = 0; | |
while(offs < count) { | |
int len = (int) utf8_len(bytes[offs]); | |
for (int i=0; i<len; ++i) { | |
utf8_units[offs+i] = i; | |
utf8_nunits[offs+i] = len; | |
} | |
offs += len; | |
++count_utf8; | |
} | |
return count_utf8; | |
} | |
size_t tokenize_file( | |
struct llama_context * lctx, | |
const char * filename, | |
const std::string & sample_start, | |
bool include_sample_start, | |
bool overlapping_samples, | |
unsigned context_length, | |
std::vector<llama_token> & out_tokens, | |
std::vector<size_t> & out_samples_begin, | |
std::vector<size_t> & out_samples_size) { | |
struct llama_file f(filename, "rb"); | |
if (f.size == 0) { | |
out_tokens.clear(); | |
out_samples_begin.clear(); | |
out_samples_size.clear(); | |
printf("%s: warning: empty or not existing training data file '%s'\n", | |
__func__, filename); | |
return out_tokens.size(); | |
} | |
// account for possible leading whitespace that will be added by tokenizer | |
// e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] | |
const int n_max_tokens_overhead = 1; | |
std::vector<char> buf; | |
buf.resize(f.size); | |
f.read_raw(buf.data(), f.size); | |
std::vector<int> utf8_units; | |
std::vector<int> utf8_nunits; | |
utf8_units.resize(buf.size()); | |
utf8_nunits.resize(buf.size()); | |
mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size()); | |
if (sample_start.size() == 0) { | |
// tokenize all data at once | |
out_tokens.resize(buf.size() + n_max_tokens_overhead); | |
int n_tokens = llama_tokenize( | |
llama_get_model(lctx), | |
buf.data(), | |
(int) buf.size(), | |
out_tokens.data(), | |
(int) out_tokens.size(), | |
false); | |
if (n_tokens < 0) { | |
out_tokens.resize(-n_tokens); | |
n_tokens = llama_tokenize( | |
llama_get_model(lctx), | |
buf.data(), | |
(int) buf.size(), | |
out_tokens.data(), | |
(int) out_tokens.size(), | |
false); | |
} | |
if (n_tokens >= 0) { | |
out_tokens.resize(n_tokens); | |
} | |
// generate sample starts at all token positions | |
out_samples_begin.clear(); | |
out_samples_begin.push_back(0); | |
out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size())); | |
size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0; | |
for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) { | |
out_samples_begin.push_back(sample_begin); | |
out_samples_size.push_back(context_length); | |
} | |
} else { | |
// split data into samples and tokenize each sample | |
std::string data_str(buf.data(), buf.size()); | |
out_samples_begin.clear(); | |
out_samples_size.clear(); | |
out_tokens.clear(); | |
// find all positions of pattern sample_start | |
size_t sample_begin = data_str.find(sample_start, 0); | |
while (sample_begin != std::string::npos) { | |
out_samples_begin.push_back(sample_begin); | |
const size_t search_start = sample_begin + sample_start.size(); | |
sample_begin = data_str.find(sample_start, search_start); | |
} | |
if (out_samples_begin.size() == 0) { | |
printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n", | |
__func__, sample_start.c_str()); | |
out_samples_begin.push_back(0); | |
} | |
out_samples_size.resize(out_samples_begin.size(), 0); | |
std::vector<char> buf_sample; | |
std::vector<llama_token> tok_sample; | |
const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size()); | |
size_t found_too_big_sample = 0; | |
size_t found_too_small_sample = 0; | |
size_t found_empty_sample = 0; | |
size_t found_min_sample_size = SIZE_MAX; | |
size_t found_max_sample_size = 0; | |
size_t max_token_text_size = 0; | |
int n_vocab = llama_n_vocab(llama_get_model(lctx)); | |
for (llama_token token=0; token < n_vocab; ++token) { | |
max_token_text_size = std::max( | |
max_token_text_size, | |
strlen(llama_token_get_text(lctx, token))); | |
} | |
// upper bound of context byte length. | |
// strings with this byte length should always tokenize to at least context_length tokens. | |
size_t context_byte_len = max_token_text_size*context_length; | |
for (unsigned i=0; i<out_samples_begin.size(); ++i) { | |
// determine sample begin and end from pattern positions | |
size_t sample_begin = out_samples_begin[i] + sample_begin_offset; | |
size_t sample_end = overlapping_samples | |
? std::min( | |
data_str.size(), | |
sample_begin + context_byte_len) | |
: (i+1 < out_samples_begin.size() | |
? out_samples_begin[i+1] | |
: data_str.size()); | |
if (sample_end < utf8_units.size() && utf8_units[sample_end] > 0) { | |
// sample end is in the middle of an utf8 character. | |
// advance sample_end to the begin of the next utf8 character. | |
sample_end += utf8_nunits[sample_end] - utf8_units[sample_end]; | |
} | |
size_t sample_size = sample_end - sample_begin; | |
if (sample_size == 0) { | |
++found_empty_sample; | |
} | |
if (sample_size > 0) { | |
// llama_tokenize expects zero terminated string, | |
// copy sample into buffer and zero terminate it. | |
buf_sample.resize(sample_size); | |
memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size); | |
// printf("sample: '%s'\n", buf_sample.data()); | |
// tokenize the sample | |
tok_sample.resize(buf_sample.size() + n_max_tokens_overhead); | |
int n_tokens = llama_tokenize(llama_get_model(lctx), | |
buf_sample.data(), | |
(int) buf_sample.size(), | |
tok_sample.data(), | |
(int) tok_sample.size(), | |
false); | |
if (n_tokens < 0) { | |
tok_sample.resize(-n_tokens); | |
n_tokens = llama_tokenize(llama_get_model(lctx), | |
buf_sample.data(), | |
(int) buf_sample.size(), | |
tok_sample.data(), | |
(int) tok_sample.size(), | |
false); | |
GGML_ASSERT(n_tokens >= 0); | |
} | |
GGML_ASSERT(n_tokens <= (int) tok_sample.size()); | |
if ((size_t) n_tokens > context_length) { | |
++found_too_big_sample; | |
} else if ((size_t) n_tokens < context_length) { | |
++found_too_small_sample; | |
} | |
found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens); | |
found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens); | |
// write out tokens, start and size of sample | |
// overwrite the string start position with the token start position | |
out_samples_begin[i] = out_tokens.size(); | |
out_samples_size[i] = (size_t) n_tokens; | |
out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens); | |
} else { | |
out_samples_begin[i] = out_tokens.size(); | |
out_samples_size[i] = 0; | |
} | |
} | |
if (found_too_big_sample > 0) { | |
printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n", | |
__func__, found_too_big_sample, found_max_sample_size, context_length); | |
} | |
if (found_too_small_sample > 0) { | |
printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n", | |
__func__, found_too_small_sample, found_min_sample_size, context_length); | |
} | |
if (found_empty_sample) { | |
printf("%s: warning: found %zu empty samples.\n", | |
__func__, found_empty_sample); | |
} | |
} | |
printf("%s: total number of samples: %zu\n", | |
__func__, out_samples_begin.size()); | |
GGML_ASSERT(out_samples_begin.size() == out_samples_size.size()); | |
return out_tokens.size(); | |
} | |
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) { | |
std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest); | |
return replace_str(filename, pattern_it, sit.c_str()); | |
} | |
struct train_params_common get_default_train_params_common() { | |
struct train_params_common params; | |
params.fn_train_data = "shakespeare.txt"; | |
params.fn_checkpoint_in = "checkpoint.gguf"; | |
params.fn_checkpoint_out = "checkpoint-ITERATION.gguf"; | |
params.pattern_fn_it = "ITERATION"; | |
params.fn_latest = "LATEST"; | |
params.print_usage = false; | |
params.save_every = 10; | |
params.seed = -1; | |
params.n_ctx = 128; | |
params.n_threads = 6; | |
params.n_batch = 8; | |
params.n_gradient_accumulation = 1; | |
params.n_epochs = -1; | |
params.custom_n_ctx = false; | |
params.use_flash = true; | |
params.use_checkpointing = true; | |
params.sample_start = ""; | |
params.include_sample_start = false; | |
params.escape = false; | |
params.overlapping_samples = false; | |
params.fill_with_next_samples = false; | |
params.separate_with_eos = false; | |
params.separate_with_bos = true; | |
params.sample_random_offsets = false; | |
params.force_reshuffle = false; | |
params.opt_past = 0; | |
params.opt_delta = 1e-5f; | |
params.opt_max_no_improvement = 0; | |
params.warmup = 100; | |
params.cos_decay_steps = 1000; | |
params.cos_decay_restart = 1.1f; | |
params.cos_decay_min = 0.1f; | |
params.enable_restart = false; | |
params.adam_n_iter = 256; | |
params.adam_alpha = 1e-3f; | |
params.adam_min_alpha = 0; | |
params.adam_decay = 1e-1f; | |
params.adam_decay_min_ndim = 2; | |
params.adam_beta1 = 0.9f; | |
params.adam_beta2 = 0.999f; | |
params.adam_gclip = 1.0f; | |
params.adam_eps_f = 0.0f; | |
return params; | |
} | |
void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) { | |
// fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
// fprintf(stderr, "\n"); | |
// fprintf(stderr, "options:\n"); | |
// fprintf(stderr, " -h, --help show this help message and exit\n"); | |
fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); | |
fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); | |
fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); | |
fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it); | |
fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest); | |
fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every); | |
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); | |
fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); | |
fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); | |
fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); | |
fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation); | |
fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str()); | |
fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n"); | |
fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); | |
fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n"); | |
fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n"); | |
fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : ""); | |
fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : ""); | |
fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : ""); | |
fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : ""); | |
fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : ""); | |
fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n"); | |
fprintf(stderr, " --no-flash Don't use flash attention \n"); | |
fprintf(stderr, " --use-flash Use flash attention (default)\n"); | |
fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); | |
fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); | |
fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); | |
fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); | |
fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); | |
fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); | |
fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); | |
fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); | |
fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); | |
fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); | |
fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); | |
fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs); | |
fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); | |
fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); | |
fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); | |
fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); | |
fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); | |
fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); | |
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); | |
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); | |
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); | |
fprintf(stderr, "\n"); | |
} | |
bool consume_common_train_arg( | |
int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param | |
) { | |
int& i = *idx; | |
std::string arg = argv[i]; | |
const std::string arg_prefix = "--"; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "--train-data") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->fn_train_data = argv[i]; | |
} else if (arg == "--checkpoint-in") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->fn_checkpoint_in = argv[i]; | |
} else if (arg == "--checkpoint-out") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->fn_checkpoint_out = argv[i]; | |
} else if (arg == "--pattern-fn-it") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->pattern_fn_it = argv[i]; | |
} else if (arg == "--fn-latest") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->fn_latest = argv[i]; | |
} else if (arg == "--save-every") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->save_every = std::stoi(argv[i]); | |
} else if (arg == "-s" || arg == "--seed") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->seed = std::stoi(argv[i]); | |
} else if (arg == "-c" || arg == "--ctx") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->n_ctx = std::stoi(argv[i]); | |
params->custom_n_ctx = true; | |
} else if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->n_threads = std::stoi(argv[i]); | |
} else if (arg == "-b" || arg == "--batch") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->n_batch = std::stoi(argv[i]); | |
} else if (arg == "--grad-acc") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->n_gradient_accumulation = std::max(1, std::stoi(argv[i])); | |
} else if (arg == "--sample-start") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->sample_start = std::string(argv[i]); | |
} else if (arg == "--escape") { | |
params->escape = true; | |
} else if (arg == "--include-sample-start") { | |
params->include_sample_start = true; | |
} else if (arg == "--overlapping-samples") { | |
params->overlapping_samples = true; | |
} else if (arg == "--fill-with-next-samples") { | |
params->fill_with_next_samples = true; | |
} else if (arg == "--separate-with-eos") { | |
params->separate_with_eos = true; | |
} else if (arg == "--separate-with-bos") { | |
params->separate_with_bos = true; | |
} else if (arg == "--no-separate-with-eos") { | |
params->separate_with_eos = false; | |
} else if (arg == "--no-separate-with-bos") { | |
params->separate_with_bos = false; | |
} else if (arg == "--sample-random-offsets") { | |
params->sample_random_offsets = true; | |
} else if (arg == "--force-reshuffle") { | |
params->force_reshuffle = true; | |
} else if (arg == "--no-flash") { | |
params->use_flash = false; | |
} else if (arg == "--use-flash") { | |
params->use_flash = true; | |
} else if (arg == "--no-checkpointing") { | |
params->use_checkpointing = false; | |
} else if (arg == "--use-checkpointing") { | |
params->use_checkpointing = true; | |
} else if (arg == "--warmup") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->warmup = std::stoi(argv[i]); | |
} else if (arg == "--cos-decay-steps") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->cos_decay_steps = std::stoi(argv[i]); | |
} else if (arg == "--cos-decay-restart") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->cos_decay_restart = std::stof(argv[i]); | |
} else if (arg == "--cos-decay-min") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->cos_decay_min = std::stof(argv[i]); | |
} else if (arg == "--enable-restart") { | |
params->enable_restart = true; | |
} else if (arg == "--disable-restart") { | |
params->enable_restart = false; | |
} else if (arg == "--opt-past") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->opt_past = std::stoi(argv[i]); | |
} else if (arg == "--opt-delta") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->opt_delta = std::stof(argv[i]); | |
} else if (arg == "--opt-max-no-improvement") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->opt_max_no_improvement = std::stoi(argv[i]); | |
} else if (arg == "--adam-epsf") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_eps_f = std::stof(argv[i]); | |
} else if (arg == "--epochs") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->n_epochs = std::stoi(argv[i]); | |
} else if (arg == "--adam-iter") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_n_iter = std::stoi(argv[i]); | |
} else if (arg == "--adam-alpha") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_alpha = std::stof(argv[i]); | |
} else if (arg == "--adam-min-alpha") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_min_alpha = std::stof(argv[i]); | |
} else if (arg == "--adam-decay") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_decay = std::stof(argv[i]); | |
} else if (arg == "--adam-decay-min-ndim") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_decay_min_ndim = std::stoi(argv[i]); | |
} else if (arg == "--adam-beta1") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_beta1 = std::stof(argv[i]); | |
} else if (arg == "--adam-beta2") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_beta2 = std::stof(argv[i]); | |
} else if (arg == "--adam-gclip") { | |
if (++i >= argc) { | |
*invalid_param = true; | |
return true; | |
} | |
params->adam_gclip = std::stof(argv[i]); | |
} else if (arg == "-h" || arg == "--help") { | |
params->print_usage = true; | |
return true; | |
} else { | |
return false; | |
} | |
return true; | |
} | |
void finish_processing_train_args(struct train_params_common * params) { | |
if (params->escape) { | |
process_escapes(params->sample_start); | |
} | |
} | |
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) { | |
struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata; | |
struct train_params_common * params = data->params; | |
struct train_state * train = data->train; | |
struct ggml_opt_context * opt = train->opt; | |
int n_batch = params->n_batch; | |
int n_ctx = params->n_ctx; | |
if (accum_step == 0) { | |
// time measurement | |
int64_t now = ggml_time_ms(); | |
if (now > data->last_time && opt->iter > data->first_iter) { | |
double dt = (double) (now - data->last_time); | |
if (data->millis_per_iter == 0.0) { | |
data->millis_per_iter = dt; | |
} else { | |
const double gain = 0.7; | |
data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain; | |
} | |
} | |
double remaining_millis = 0.0; | |
if (data->millis_per_iter > 0.0) { | |
const int n_iter = params->adam_n_iter; | |
const int done_iter = opt->iter - data->first_iter; | |
const int remaining_iter = n_iter - done_iter; | |
remaining_millis = remaining_iter * data->millis_per_iter; | |
} | |
// file saving | |
const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every); | |
if (save_now) { | |
int new_iters = opt->iter - data->last_save_iter; | |
train->train_its += new_iters; | |
train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx; | |
if (data->save_cb) { | |
data->save_cb(data->save_data, train); | |
} | |
data->last_save_iter = opt->iter; | |
} | |
// exclude file saving from time measurement, by measuring last_time after saving | |
data->last_time = ggml_time_ms(); | |
*sched = learning_schedule( | |
opt->iter, | |
params->warmup, | |
params->cos_decay_steps, | |
params->adam_alpha, | |
params->adam_min_alpha, | |
params->cos_decay_min, | |
params->cos_decay_restart, | |
params->enable_restart); | |
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); | |
if (impr_plot > 0) impr_plot = 0; | |
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0; | |
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", | |
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, | |
*sched, opt->loss_after); | |
if (data->millis_per_iter > 0) { | |
printf(" dt="); | |
print_duration(data->millis_per_iter); | |
printf(" eta="); | |
print_duration(remaining_millis); | |
} | |
float improvement = opt->loss_before - opt->loss_after; | |
const float plot_scale = 10.0f; | |
int bar_len = (int)(1 + improvement*plot_scale + 0.5); | |
printf(" |"); | |
for (int i=0; i<bar_len; ++i) { | |
printf("-"); | |
} | |
printf(">"); | |
printf("\n"); | |
} | |
int64_t used_samples = get_example_targets_batch( | |
data->lctx, | |
data->tokens_input, | |
data->target_probs, | |
train->shuffle_next_sample, | |
data->shuffled_samples_offs, | |
data->shuffled_samples_begin, | |
data->shuffled_samples_size, | |
data->samples_count, | |
data->tokens_data, | |
data->tokens_size, | |
params->separate_with_eos, | |
params->separate_with_bos, | |
params->fill_with_next_samples, | |
params->sample_random_offsets); | |
train->train_samples += used_samples; | |
train->shuffle_next_sample += used_samples; | |
if (train->shuffle_next_sample >= train->shuffle_sample_count) { | |
++train->train_epochs; | |
printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs); | |
// note: we may have used some samples from the current shuffling more than once | |
train->shuffle_rng_state_current = train->shuffle_rng_state_next; | |
train->shuffle_rng_state_next = shuffle_samples( | |
train->shuffle_rng_state_current, | |
data->shuffled_samples_offs, | |
data->shuffled_samples_begin, | |
data->shuffled_samples_size, | |
data->samples_begin, | |
data->samples_size, | |
data->samples_count); | |
train->shuffle_next_sample = 0; | |
} | |
const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs); | |
if (last_epoch_reached) { | |
// allow optimization iteration at last epoch to be completed before canceling | |
if (data->iter_at_last_epoch < 0) { | |
data->iter_at_last_epoch = opt->iter; | |
} else if (opt->iter > data->iter_at_last_epoch) { | |
*cancel = true; | |
} | |
} | |
} | |