Spaces:
Build error
Build error
struct random_normal_distribution { | |
std::mt19937 gen; | |
std::normal_distribution<float> rd; | |
float min; | |
float max; | |
}; | |
struct random_uniform_distribution { | |
std::mt19937 gen; | |
std::uniform_real_distribution<float> rd; | |
}; | |
void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { | |
rnd->gen = std::mt19937(seed); | |
rnd->rd = std::normal_distribution<float>{mean, std}; | |
rnd->min = min; | |
rnd->max = max; | |
} | |
void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { | |
rnd->gen = std::mt19937(seed); | |
rnd->rd = std::uniform_real_distribution<float>{min, max}; | |
} | |
int clamp(const int v, const int min, const int max) { | |
return ((v < min) ? (min) : (v > max) ? (max) : v); | |
} | |
float fclamp(const float v, const float min, const float max) { | |
return ((v < min) ? (min) : (v > max) ? (max) : v); | |
} | |
float frand() { | |
return (float)rand()/(float)RAND_MAX; | |
} | |
float frand_normal(struct random_normal_distribution * rnd) { | |
return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); | |
} | |
float frand_uniform(struct random_uniform_distribution * rnd) { | |
return rnd->rd(rnd->gen); | |
} | |
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { | |
float scale = 1.0f; // xavier | |
switch (tensor->n_dims) { | |
case 1: | |
scale /= sqrtf(tensor->ne[0]); | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); | |
*dst = scale * frand_normal(rnd); | |
} | |
break; | |
case 2: | |
scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
*dst = scale * frand_normal(rnd); | |
} | |
} | |
break; | |
case 3: | |
scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); | |
*dst = scale * frand_normal(rnd); | |
} | |
} | |
} | |
break; | |
case 4: | |
scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); | |
for (int i3 = 0; i3 < tensor->ne[3]; i3++) { | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); | |
*dst = scale * frand_normal(rnd); | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
}; | |
return tensor; | |
} | |
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { | |
switch (tensor->n_dims) { | |
case 1: | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); | |
*dst = frand_uniform(rnd); | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
*dst = frand_uniform(rnd); | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); | |
*dst = frand_uniform(rnd); | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < tensor->ne[3]; i3++) { | |
for (int i2 = 0; i2 < tensor->ne[2]; i2++) { | |
for (int i1 = 0; i1 < tensor->ne[1]; i1++) { | |
for (int i0 = 0; i0 < tensor->ne[0]; i0++) { | |
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); | |
*dst = frand_uniform(rnd); | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
}; | |
return tensor; | |
} | |
struct my_llama_hparams { | |
uint32_t n_vocab = 32000; | |
uint32_t n_ctx = 512; | |
uint32_t n_embd = 4096; | |
uint32_t n_head = 32; | |
uint32_t n_layer = 32; | |
uint32_t n_rot = 64; | |
uint32_t n_ff = 11008; | |
// float f_norm_eps = 1e-5; // falcon | |
float f_norm_rms_eps = 1e-5; // llama | |
float rope_freq_base = 10000.0f; | |
float rope_freq_scale = 1.0f; | |
}; | |
struct my_llama_layer { | |
// normalization | |
struct ggml_tensor * attention_norm; | |
// attention | |
struct ggml_tensor * wq; | |
struct ggml_tensor * wk; | |
struct ggml_tensor * wv; | |
struct ggml_tensor * wo; | |
// normalization | |
struct ggml_tensor * ffn_norm; | |
// ff | |
struct ggml_tensor * w1; | |
struct ggml_tensor * w2; | |
struct ggml_tensor * w3; | |
}; | |
struct my_llama_model { | |
struct ggml_context * ctx = NULL; | |
my_llama_hparams hparams; | |
struct ggml_tensor * tok_embeddings; | |
struct ggml_tensor * norm; | |
struct ggml_tensor * output; | |
std::vector<my_llama_layer> layers; | |
uint32_t train_its = 0; | |
uint32_t train_samples = 0; | |
uint32_t train_tokens = 0; | |
}; | |
// gguf constants | |
const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; | |
const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; | |
const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; | |
const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; | |
const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; | |
const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; | |
const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; | |
const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; | |
const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; | |
const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; | |
const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; | |
const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; | |
const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; | |
const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; | |
const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; | |
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; | |
const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; | |
const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; | |
const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; | |
const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; | |
// gguf constants (sync with gguf.py) | |
const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; | |
const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; | |
const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; | |
const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; | |
const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; | |
const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; | |
const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; | |
const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; | |
const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; | |
const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp | |
const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; | |
const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; | |
const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; | |
const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; | |
const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; | |
const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; | |
const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; | |
const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; | |
const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; | |
const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; | |
const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; | |
const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; | |
const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; | |
const char * LLM_TENSOR_OUTPUT = "output"; | |
const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; | |
const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; | |
const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; | |
const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; | |
const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; | |
const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; | |
const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; | |
const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; | |
const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; | |
void print_params(struct my_llama_hparams * params) { | |
printf("%s: n_vocab: %d\n", __func__, params->n_vocab); | |
printf("%s: n_ctx: %d\n", __func__, params->n_ctx); | |
printf("%s: n_embd: %d\n", __func__, params->n_embd); | |
printf("%s: n_head: %d\n", __func__, params->n_head); | |
printf("%s: n_ff: %d\n", __func__, params->n_ff); | |
printf("%s: n_layer: %d\n", __func__, params->n_layer); | |
printf("%s: n_rot: %d\n", __func__, params->n_rot); | |
} | |
void init_model(struct my_llama_model * model) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_layer = hparams.n_layer; | |
const uint32_t n_vocab = hparams.n_vocab; | |
const uint32_t n_ff = hparams.n_ff; | |
struct ggml_context * ctx = model->ctx; | |
model->train_its = 0; | |
model->train_samples = 0; | |
model->train_tokens = 0; | |
std::vector<char> tn_buf; | |
tn_buf.resize(GGML_MAX_NAME); | |
auto tn = [&tn_buf](const char * key) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); | |
return tn_buf.data(); | |
}; | |
auto tni = [&tn_buf](const char * key, int bid) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), key, bid); | |
std::string s = tn_buf.data(); | |
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); | |
return tn_buf.data(); | |
}; | |
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); | |
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); | |
ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD)); | |
ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM)); | |
ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT)); | |
model->layers.resize(n_layer); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); | |
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); | |
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); | |
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); | |
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); | |
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); | |
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); | |
ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i)); | |
ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i)); | |
ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i)); | |
ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i)); | |
ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i)); | |
ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i)); | |
ggml_set_name(layer.w1, tni(LLM_TENSOR_FFN_GATE, i)); | |
ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i)); | |
ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i)); | |
} | |
} | |
void set_param_model(struct my_llama_model * model) { | |
const auto& hparams = model->hparams; | |
const uint32_t n_layer = hparams.n_layer; | |
struct ggml_context* ctx = model->ctx; | |
ggml_set_param(ctx, model->tok_embeddings); | |
ggml_set_param(ctx, model->norm); | |
ggml_set_param(ctx, model->output); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
ggml_set_param(ctx, layer.attention_norm); | |
ggml_set_param(ctx, layer.wq); | |
ggml_set_param(ctx, layer.wk); | |
ggml_set_param(ctx, layer.wv); | |
ggml_set_param(ctx, layer.wo); | |
ggml_set_param(ctx, layer.ffn_norm); | |
ggml_set_param(ctx, layer.w1); | |
ggml_set_param(ctx, layer.w2); | |
ggml_set_param(ctx, layer.w3); | |
} | |
} | |
void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_layer = hparams.n_layer; | |
struct random_normal_distribution rnd; | |
init_random_normal_distribution(&rnd, seed, mean, std, min, max); | |
randomize_tensor_normal(model->tok_embeddings, &rnd); | |
randomize_tensor_normal(model->norm, &rnd); | |
randomize_tensor_normal(model->output, &rnd); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
randomize_tensor_normal(layer.attention_norm, &rnd); | |
randomize_tensor_normal(layer.wq, &rnd); | |
randomize_tensor_normal(layer.wk, &rnd); | |
randomize_tensor_normal(layer.wv, &rnd); | |
randomize_tensor_normal(layer.wo, &rnd); | |
randomize_tensor_normal(layer.ffn_norm, &rnd); | |
randomize_tensor_normal(layer.w1, &rnd); | |
randomize_tensor_normal(layer.w2, &rnd); | |
randomize_tensor_normal(layer.w3, &rnd); | |
} | |
} | |
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { | |
GGML_ASSERT(tensor->n_dims == 1); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
} | |
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { | |
GGML_ASSERT(tensor->n_dims == 2); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
} | |
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { | |
GGML_ASSERT(tensor->n_dims == 3); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
GGML_ASSERT(tensor->ne[2] == ne2); | |
} | |
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { | |
GGML_ASSERT(tensor->n_dims == 4); | |
GGML_ASSERT(tensor->ne[0] == ne0); | |
GGML_ASSERT(tensor->ne[1] == ne1); | |
GGML_ASSERT(tensor->ne[2] == ne2); | |
GGML_ASSERT(tensor->ne[3] == ne3); | |
} | |
static size_t hash(void * p) { | |
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; | |
} | |
static size_t hash_find(void * hash_table[], void * p) { | |
size_t h = hash(p); | |
// linear probing | |
size_t i = h; | |
while (hash_table[i] != NULL && hash_table[i] != p) { | |
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; | |
if (i == h) { | |
// visited all hash table entries -> not found | |
return GGML_GRAPH_HASHTABLE_SIZE; | |
} | |
} | |
return i; | |
} | |
static bool hash_insert(void * hash_table[], void * p) { | |
//size_t h = hash(p); | |
size_t i = hash_find(hash_table, p); | |
GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full | |
if (hash_table[i] == p) { | |
return true; | |
} | |
// insert | |
GGML_ASSERT(hash_table[i] == NULL); | |
hash_table[i] = p; | |
return false; | |
} | |
static bool hash_contains(void * hash_table[], void * p) { | |
size_t i = hash_find(hash_table, p); | |
return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); | |
} | |
struct hash_map { | |
void * keys[GGML_GRAPH_HASHTABLE_SIZE]; | |
void * vals[GGML_GRAPH_HASHTABLE_SIZE]; | |
}; | |
//static const size_t HASH_MAP_SIZE = sizeof(struct hash_map); | |
struct hash_map * new_hash_map() { | |
struct hash_map * result = new struct hash_map; | |
for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) { | |
result->keys[i] = NULL; | |
result->vals[i] = NULL; | |
} | |
return result; | |
}; | |
void free_hash_map(struct hash_map * map) { | |
delete map; | |
} | |
static bool ggml_is_view(struct ggml_tensor * t) { | |
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || | |
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; | |
} | |
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { | |
switch (t->op) { | |
case GGML_OP_PERMUTE: | |
case GGML_OP_RESHAPE: | |
case GGML_OP_TRANSPOSE: | |
case GGML_OP_VIEW: | |
return t->src[0]; | |
case GGML_OP_CPY: | |
return t->src[1]; | |
default: | |
return NULL; | |
} | |
} | |
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { | |
struct ggml_tensor * parent = t; | |
do { | |
parent = get_view_parent(parent); | |
} while (ggml_is_view(parent)); | |
return parent; | |
} | |
struct ggml_tensor * ggml_recompute_graph_node( | |
struct ggml_context * ctx, | |
struct ggml_cgraph * graph, | |
struct hash_map * replacements, | |
struct ggml_tensor * node) { | |
if (node == NULL) { | |
return NULL; | |
} | |
if (node->is_param) { | |
return node; | |
} | |
if (!hash_contains(graph->visited_hash_table, node)) { | |
return node; | |
} | |
int count_children = 0; | |
for (int k = 0; k < GGML_MAX_SRC; ++k) { | |
if (node->src[k]) { | |
++count_children; | |
} | |
} | |
if (count_children == 0) { | |
return node; | |
} | |
size_t i = hash_find(replacements->keys, node); | |
GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full | |
if (replacements->keys[i] == node) { | |
return (struct ggml_tensor *) replacements->vals[i]; | |
} | |
struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); | |
// insert clone into replacements | |
GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite | |
replacements->keys[i] = node; | |
replacements->vals[i] = clone; | |
clone->op = node->op; | |
clone->grad = node->grad; | |
clone->is_param = node->is_param; | |
clone->extra = node->extra; | |
for (int k = 0; k < GGML_MAX_DIMS; ++k) { | |
clone->nb[k] = node->nb[k]; | |
} | |
for (int k = 0; k < GGML_MAX_SRC; ++k) { | |
clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); | |
} | |
if (ggml_is_view(clone)) { | |
struct ggml_tensor * source = get_view_source(clone); | |
GGML_ASSERT(source != NULL); | |
clone->data = source->data; | |
} | |
GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); | |
GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); | |
memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); | |
ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); | |
return clone; | |
}; | |
void ggml_build_backward_gradient_checkpointing( | |
struct ggml_context * ctx, | |
struct ggml_cgraph * gf, | |
struct ggml_cgraph * gb, | |
struct ggml_cgraph * gb_tmp, | |
struct ggml_tensor * * checkpoints, | |
int n_checkpoints) { | |
*gb_tmp = *gf; | |
ggml_build_backward_expand(ctx, gf, gb_tmp, true); | |
if (n_checkpoints <= 0) { | |
*gb = *gb_tmp; | |
return; | |
} | |
struct hash_map * replacements = new_hash_map(); | |
// insert checkpoints in replacements | |
for (int i = 0; i < n_checkpoints; ++i) { | |
size_t k = hash_find(replacements->keys, checkpoints[i]); | |
GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full | |
GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite | |
replacements->keys[k] = checkpoints[i]; | |
replacements->vals[k] = checkpoints[i]; | |
} | |
*gb = *gf; | |
// rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], | |
// replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), | |
// by recomputing them from checkpoints | |
for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) { | |
struct ggml_tensor * node = gb_tmp->nodes[i]; | |
for (int k = 0; k < GGML_MAX_SRC; ++k) { | |
// insert new tensors recomputing src, reusing already made replacements, | |
// remember replacements: remember new tensors with mapping from corresponding gf nodes | |
// recurse for input tensors, | |
// unless (i.e. terminating when) input tensors are checkpoints | |
node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); | |
} | |
// insert rewritten backward node with replacements made into resulting backward graph gb | |
ggml_build_forward_expand(gb, node); | |
} | |
free_hash_map(replacements); | |
} | |
struct ggml_tensor * llama_build_train_graphs( | |
struct my_llama_model * model, | |
struct ggml_allocr * alloc, | |
struct ggml_context * ctx, | |
struct ggml_cgraph * gf, | |
struct ggml_cgraph * gb, | |
struct ggml_cgraph * gb_tmp, | |
struct ggml_tensor * * logits, | |
struct ggml_tensor * tokens_input, | |
struct ggml_tensor * targets, | |
const int n_tokens, | |
const int n_batch, | |
const bool enable_flash_attn, | |
const bool enable_checkpointing) { | |
ggml_set_scratch(ctx, { 0, 0, nullptr, }); | |
const int n_past = 0; | |
const int N = n_tokens; | |
const auto & hparams = model->hparams; | |
const int n_ctx = hparams.n_ctx; | |
const int n_vocab = hparams.n_vocab; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_head = hparams.n_head; | |
const int n_rot = hparams.n_rot; | |
const int n_ff = hparams.n_ff; | |
const float f_norm_rms_eps = hparams.f_norm_rms_eps; | |
const float rope_freq_base = hparams.rope_freq_base; | |
const float rope_freq_scale = hparams.rope_freq_scale; | |
auto set_name = [](struct ggml_tensor * t, const char * n) { | |
ggml_set_name(t, n); | |
if (t->grad) { | |
ggml_format_name(t->grad, "%s->grad", n); | |
} | |
}; | |
// rope has so much parameters that we make a custom function for it | |
auto rope = [ctx, n_rot, n_ctx, rope_freq_base, rope_freq_scale] | |
(struct ggml_tensor * t) -> struct ggml_tensor * { | |
// not capturing these, to silcence warnings | |
const int n_past = 0; | |
const int rope_mode = 0; | |
return ggml_rope_custom(ctx, | |
t, n_past, n_rot, rope_mode, n_ctx, | |
rope_freq_base, rope_freq_scale); | |
}; | |
set_name(tokens_input, "tokens_input"); | |
set_name(targets, "targets"); | |
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); | |
struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); | |
struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); | |
struct ggml_tensor * cur = t01; | |
std::vector<struct ggml_tensor *> checkpoints; | |
checkpoints.push_back(tokens_input); | |
checkpoints.push_back(targets); | |
checkpoints.push_back(t00); | |
checkpoints.push_back(t01); | |
struct ggml_tensor * kv_scale; | |
if (!enable_flash_attn) { | |
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); | |
} | |
for (int il = 0; il < n_layer; ++il) { | |
struct my_llama_layer & layer = model->layers[il]; | |
struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); | |
struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); | |
struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); | |
struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); | |
struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); | |
struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); | |
struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch); | |
struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); | |
struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); | |
struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd); | |
struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); | |
struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); | |
struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch); | |
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); | |
struct ggml_tensor * t16; | |
if (enable_flash_attn) { | |
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); | |
} else { | |
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); | |
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); | |
struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); | |
struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); | |
t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); | |
} | |
struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch); | |
struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch); | |
struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); | |
struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); | |
struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); | |
struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); | |
struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); | |
struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); | |
struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); | |
struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); | |
struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); | |
struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); | |
struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); | |
struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); | |
cur = t30; | |
checkpoints.push_back(cur); | |
} | |
struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); | |
struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); | |
struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); | |
struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); | |
struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); | |
struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); | |
checkpoints.push_back(t31); | |
checkpoints.push_back(t32); | |
checkpoints.push_back(t33); | |
checkpoints.push_back(t34); | |
checkpoints.push_back(t35); | |
checkpoints.push_back(t36); | |
ggml_build_forward_expand(gf, t36); | |
if (enable_checkpointing) { | |
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); | |
} else { | |
*gb = *gf; | |
ggml_build_backward_expand(ctx, gf, gb, true); | |
} | |
if (alloc) { | |
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them | |
int n_leafs_before = gb->n_leafs; | |
int n_nodes_before = gb->n_nodes; | |
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f); | |
// output tensors | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); | |
// input gradient | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); | |
GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad)); | |
ggml_allocr_alloc(alloc, t36->grad); | |
// gradient tensors (will be set to zero by ggml_graph_reset) | |
// pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632 | |
for (int i = 0; i < gf->n_nodes; ++i) { | |
if (!gf->grads[i]) continue; | |
if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) { | |
ggml_allocr_alloc(alloc, gf->grads[i]); | |
} | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one)); | |
} | |
// allocating checkpoints in one block to reduce memory fragmentation | |
// note: they will be freed in reverse order | |
for (int i = 0; i < (int) checkpoints.size(); ++i) { | |
if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) { | |
ggml_allocr_alloc(alloc, checkpoints[i]); | |
} | |
} | |
//int n_leafs_after = gb->n_leafs; | |
//int n_nodes_after = gb->n_nodes; | |
ggml_allocr_alloc_graph(alloc, gb); | |
// remove the additional nodes and leafs | |
for (int i = n_leafs_before; i < gb->n_leafs; ++i) { | |
gb->leafs[i] = NULL; | |
} | |
for (int i = n_nodes_before; i < gb->n_nodes; ++i) { | |
gb->nodes[i] = NULL; | |
} | |
gb->n_leafs = n_leafs_before; | |
gb->n_nodes = n_nodes_before; | |
} | |
*logits = t35; | |
return t36; | |
} | |
void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { | |
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); | |
*ptr = value; | |
} | |
void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { | |
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
*ptr = value; | |
} | |
void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { | |
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
*ptr = value; | |
} | |
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { | |
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
return *ptr; | |
} | |
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { | |
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
return *ptr; | |
} | |
void print_row(struct ggml_tensor * probs, int i) { | |
for (int k = 0; k < probs->ne[0]; ++k) { | |
float p = get_f32_2d(probs, k, i); | |
printf(" %.2f", p); | |
} | |
printf("\n"); | |
} | |
void print_matrix(struct ggml_tensor * probs) { | |
assert(probs->n_dims == 2); | |
for (int i = 0; i < probs->ne[1]; ++i) { | |
for (int k = 0; k < probs->ne[0]; ++k) { | |
float p = get_f32_2d(probs, k, i); | |
printf(" %.2f", p); | |
} | |
printf("\n"); | |
} | |
} | |
void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { | |
int n_tokens = tokens_input->ne[0]; | |
int n_vocab = target_logits->ne[0]; | |
size_t sample = train_samples[example_id % n_train_samples]; | |
GGML_ASSERT(sample+n_tokens-1 < n_train_data); | |
ggml_set_f32(target_logits, -1.0f/n_vocab); | |
ggml_set_f32(target_probs, 0.0f); | |
ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx)); | |
for (int i=1; i<n_tokens+1; ++i) { | |
int token = clamp(train_data[sample+i-1], 0, n_vocab-1); | |
set_f32_2d(target_logits, token, i-1, +1.0f); | |
set_f32_2d(target_probs, token, i-1, +1.0f); | |
if (i<n_tokens) { | |
ggml_set_i32_1d(tokens_input, i, token); | |
} | |
} | |
} | |
void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { | |
GGML_ASSERT(tokens_input->n_dims == 2); | |
GGML_ASSERT(target_logits->n_dims == 3); | |
GGML_ASSERT(target_probs->n_dims == 3); | |
int n_vocab = target_logits->ne[0]; | |
int n_tokens = tokens_input->ne[0]; | |
int n_batch = tokens_input->ne[1]; | |
GGML_ASSERT(n_tokens == target_logits->ne[1]); | |
GGML_ASSERT(n_batch == target_logits->ne[2]); | |
GGML_ASSERT(n_vocab == target_probs->ne[0]); | |
GGML_ASSERT(n_tokens == target_probs->ne[1]); | |
GGML_ASSERT(n_batch == target_probs->ne[2]); | |
ggml_set_f32(target_logits, -1.0f/n_vocab); | |
ggml_set_f32(target_probs, 0.0f); | |
// printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); | |
for (int k=0; k<n_batch; ++k) { | |
// printf("%s: batch %d\n", __func__, k); | |
size_t sample_idx = (example_id*n_batch + k) % n_train_samples; | |
size_t sample = train_samples[sample_idx]; | |
// printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample); | |
GGML_ASSERT(sample+n_tokens-1 < n_train_data); | |
set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx)); | |
for (int i=1; i<n_tokens+1; ++i) { | |
int token = clamp(train_data[sample+i-1], 0, n_vocab-1); | |
set_f32_3d(target_logits, token, i-1, k, +1.0f); | |
set_f32_3d(target_probs, token, i-1, k, +1.0f); | |
if (i<n_tokens) { | |
set_i32_2d(tokens_input, i, k, token); | |
} | |
} | |
} | |
} | |
int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) { | |
FILE * fp = std::fopen(filename, "rb"); | |
if (fp == NULL) { | |
return 0; | |
} | |
GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0); | |
GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0); | |
size_t size = 0; | |
__int64 ret = _ftelli64(fp); | |
size = ret; | |
long ret = std::ftell(fp); | |
size = ret; | |
GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0); | |
GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0); | |
std::vector<char> buf; | |
buf.resize(size+1); | |
out.resize(size+1); | |
if (std::fread(buf.data(), size, 1, fp) != 1) { | |
die("unexpectedly reached end of file"); | |
} | |
if (ferror(fp)) { | |
die_fmt("fread failed: %s", strerror(errno)); | |
} | |
buf[size] = '\0'; | |
int n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false); | |
if (n_tokens < 0) { | |
out.resize(-n_tokens); | |
n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false); | |
} | |
GGML_ASSERT(n_tokens >= 0); | |
out.resize(n_tokens); | |
bool verify = false; | |
if (verify) { | |
const char * in = buf.data(); | |
const char * end = buf.data() + buf.size(); | |
for (int i = 0; i < (int) out.size(); ++i) { | |
std::string s = llama_token_to_piece(lctx, out[i]); | |
int len = s.length(); | |
if (in >= end) { | |
printf("%s: unexpected end of original text.\n", __func__); | |
break; | |
} | |
const bool matches = (strncmp(in, s.c_str(), len) == 0); | |
if (matches) { | |
in += len; | |
} else { | |
printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str()); | |
} | |
} | |
} | |
return n_tokens; | |
} | |
void shuffle_ints(int * begin, int * end) { | |
if (end <= begin) return; | |
int max=begin[0]; | |
for (int i=1; i<end-begin; ++i) { | |
if (begin[i] > max) { | |
max = begin[i]; | |
} | |
} | |
std::vector<float> vals; | |
vals.resize(max+1); | |
for (int i=0; i<max+1; ++i) { | |
vals[i] = frand(); | |
} | |
std::sort(begin, end, [&vals](int a, int b){ | |
return vals.at(a) < vals.at(b); | |
}); | |
} | |
bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { | |
GGML_ASSERT(a != NULL); | |
GGML_ASSERT(b != NULL); | |
GGML_ASSERT(a->type == b->type); | |
GGML_ASSERT(ggml_are_same_shape(a, b)); | |
GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); | |
return true; | |
} | |
void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { | |
if (dst == NULL) { | |
return; | |
} | |
struct ggml_tensor * t = ggml_get_tensor(ctx, name); | |
GGML_ASSERT(are_same_layout(dst, t)); | |
memcpy(dst->data, t->data, ggml_nbytes(t)); | |
if (strlen(ggml_get_name(dst)) == 0) { | |
ggml_set_name(dst, name); | |
} | |
} | |
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { | |
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read | |
uint32_t file_version; | |
GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); | |
GGML_ASSERT(file_version == 0); | |
GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); | |
GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); | |
GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); | |
uint64_t nx; | |
GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); | |
opt->nx = (size_t) nx; | |
// don't call ggml_opt_init until optimizer type and optimizer specific parameters are know | |
std::string opt_type; | |
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); | |
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { | |
opt->params.type = GGML_OPT_ADAM; | |
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); | |
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); | |
GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); | |
GGML_ASSERT(opt->ctx != NULL); | |
ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); | |
read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); | |
read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); | |
read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); | |
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { | |
opt->params.type = GGML_OPT_LBFGS; | |
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); | |
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); | |
GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); | |
GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); | |
GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); | |
GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); | |
GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); | |
GGML_ASSERT(opt->ctx != NULL); | |
ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); | |
read_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); | |
read_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); | |
read_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); | |
read_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); | |
read_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); | |
read_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); | |
read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); | |
read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); | |
read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); | |
read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); | |
} else { | |
die("unknown optimizer type"); | |
} | |
} | |
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); | |
gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); | |
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); | |
switch (opt->params.type) { | |
case GGML_OPT_ADAM: | |
{ | |
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); | |
ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); | |
ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); | |
if (opt->adam.pf) { | |
ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); | |
} | |
gguf_add_tensor(fctx, opt->adam.m); | |
gguf_add_tensor(fctx, opt->adam.v); | |
if (opt->adam.pf) { | |
gguf_add_tensor(fctx, opt->adam.pf); | |
} | |
} break; | |
case GGML_OPT_LBFGS: | |
{ | |
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); | |
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); | |
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); | |
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); | |
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); | |
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); | |
ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); | |
ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); | |
ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); | |
ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); | |
ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); | |
if (opt->lbfgs.pf) { | |
ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); | |
} | |
ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); | |
ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); | |
ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); | |
ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); | |
gguf_add_tensor(fctx, opt->lbfgs.x); | |
gguf_add_tensor(fctx, opt->lbfgs.xp); | |
gguf_add_tensor(fctx, opt->lbfgs.g); | |
gguf_add_tensor(fctx, opt->lbfgs.gp); | |
gguf_add_tensor(fctx, opt->lbfgs.d); | |
if (opt->lbfgs.pf) { | |
gguf_add_tensor(fctx, opt->lbfgs.pf); | |
} | |
gguf_add_tensor(fctx, opt->lbfgs.lmal); | |
gguf_add_tensor(fctx, opt->lbfgs.lmys); | |
gguf_add_tensor(fctx, opt->lbfgs.lms); | |
gguf_add_tensor(fctx, opt->lbfgs.lmy); | |
} break; | |
} | |
} | |
void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { | |
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read | |
std::string arch; | |
std::vector<char> keybuf; | |
keybuf.resize(512); | |
auto kv = [&arch, &keybuf](const char * key) -> const char * { | |
snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); | |
return keybuf.data(); | |
}; | |
std::vector<char> tn_buf; | |
tn_buf.resize(GGML_MAX_NAME); | |
auto tn = [&tn_buf](const char * key) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); | |
return tn_buf.data(); | |
}; | |
auto tni = [&tn_buf](const char * key, int bid) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), key, bid); | |
std::string s = tn_buf.data(); | |
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); | |
return tn_buf.data(); | |
}; | |
GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); | |
GGML_ASSERT(arch == "llama"); | |
uint32_t ftype_u; | |
GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); | |
GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); | |
// n_ctx was not saved in earlier checkpoint file versions, so we make it optional here | |
GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); | |
GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); | |
GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); | |
GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); | |
GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); | |
model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head; | |
GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT)); | |
float rope_freq_scale = 1.0f; | |
GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); | |
GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); | |
GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); | |
if (rope_freq_scale != 1.0f) { | |
model->hparams.rope_freq_scale = 1.0f / rope_freq_scale; | |
} | |
init_model(model); | |
read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); | |
read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); | |
read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); | |
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); | |
read_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); | |
read_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); | |
read_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); | |
read_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); | |
read_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); | |
read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); | |
read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); | |
read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); | |
} | |
} | |
void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { | |
const char * arch = "llama"; | |
enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; | |
std::vector<char> keybuf; | |
keybuf.resize(512); | |
auto kv = [arch, &keybuf](const char * key) -> const char * { | |
snprintf(keybuf.data(), keybuf.size(), key, arch); | |
return keybuf.data(); | |
}; | |
// set arch | |
gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); | |
gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); | |
// set hparams | |
gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx ); | |
gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd ); | |
gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff ); | |
gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head ); | |
gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer ); | |
gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot ); | |
gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps ); | |
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp | |
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale ); | |
// set vocab by copying from vocab_model gguf file | |
{ | |
struct gguf_init_params params = { | |
/*.no_alloc = */ false, | |
/*.ctx = */ NULL, | |
}; | |
struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params); | |
const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST)); | |
if (token_idx == -1) { | |
die("cannot find tokenizer vocab in model file"); | |
} | |
const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx); | |
const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES)); | |
if (score_idx == -1) { | |
die("cannot find tokenizer scores in model file"); | |
} | |
const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx); | |
const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE)); | |
if (toktype_idx == -1) { | |
die("cannot find token type list in GGUF file"); | |
} | |
const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx); | |
std::string tokenizer_name; | |
GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL)); | |
gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str()); | |
gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab); | |
gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab); | |
int32_t special_bos_id = 1; | |
int32_t special_eos_id = 2; | |
int32_t special_unk_id = 0; | |
int32_t special_sep_id = -1; | |
int32_t special_pad_id = -1; | |
if (tokenizer_name == "llama") { | |
// default special tokens | |
special_bos_id = 1; | |
special_eos_id = 2; | |
special_unk_id = 0; | |
special_sep_id = -1; | |
special_pad_id = -1; | |
} else if (tokenizer_name == "gpt2") { | |
// read and copy bpe merges | |
const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES)); | |
if (merges_keyidx == -1) { | |
die("cannot find tokenizer merges in model file"); | |
} | |
const int n_merges = gguf_get_arr_n(vctx, merges_keyidx); | |
std::vector<const char*> merges; | |
merges.resize(n_merges); | |
for (int i = 0; i < n_merges; i++) { | |
merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i); | |
} | |
gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges); | |
// default special tokens | |
special_bos_id = 11; | |
special_eos_id = 11; | |
special_unk_id = -1; | |
special_sep_id = -1; | |
special_pad_id = -1; | |
} else { | |
fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); | |
fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__); | |
} | |
std::vector<const char*> tokens; | |
tokens.resize(n_vocab); | |
for (uint32_t i = 0; i < n_vocab; i++) { | |
tokens[i] = gguf_get_arr_str(vctx, token_idx, i); | |
} | |
gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab); | |
GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID)); | |
GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID)); | |
GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID)); | |
GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID)); | |
GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID)); | |
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id); | |
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id); | |
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id); | |
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id); | |
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id); | |
gguf_free(vctx); | |
} | |
// add tensors | |
gguf_add_tensor(fctx, model->tok_embeddings); | |
gguf_add_tensor(fctx, model->norm); | |
gguf_add_tensor(fctx, model->output); | |
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
gguf_add_tensor(fctx, layer.attention_norm); | |
gguf_add_tensor(fctx, layer.wq); | |
gguf_add_tensor(fctx, layer.wk); | |
gguf_add_tensor(fctx, layer.wv); | |
gguf_add_tensor(fctx, layer.wo); | |
gguf_add_tensor(fctx, layer.ffn_norm); | |
gguf_add_tensor(fctx, layer.w1); | |
gguf_add_tensor(fctx, layer.w2); | |
gguf_add_tensor(fctx, layer.w3); | |
} | |
} | |
void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { | |
struct gguf_context * fctx = gguf_init_empty(); | |
save_llama_model_gguf(fctx, fn_vocab_model, model); | |
// write file | |
const bool only_meta = false; | |
gguf_write_to_file(fctx, filename, only_meta); | |
gguf_free(fctx); | |
} | |
void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) { | |
load_llama_model_gguf(fctx, f_ggml_ctx, model); | |
uint32_t file_version; | |
GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); | |
GGML_ASSERT(file_version == 0); | |
GGUF_GET_KEY(fctx, model->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); | |
GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); | |
GGUF_GET_KEY(fctx, model->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); | |
load_opt_context_gguf(fctx, f_ggml_ctx, opt); | |
} | |
void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { | |
save_llama_model_gguf(fctx, fn_vocab_model, model); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 0); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, model->train_samples); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT, model->train_tokens); | |
save_opt_context_gguf(fctx, opt); | |
} | |
bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) { | |
struct ggml_context * f_ggml_ctx; | |
struct gguf_init_params params; | |
params.no_alloc = false; | |
params.ctx = &f_ggml_ctx; | |
struct gguf_context * fctx = gguf_init_from_file(filename, params); | |
if (fctx == NULL) { | |
return false; | |
} | |
load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt); | |
return true; | |
} | |
void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { | |
struct gguf_context * fctx = gguf_init_empty(); | |
save_checkpoint_gguf(fctx, fn_vocab_model, model, opt); | |
// write file | |
const bool only_meta = false; | |
gguf_write_to_file(fctx, filename, only_meta); | |
gguf_free(fctx); | |
} | |
float cosine_decay(const int decay_steps, const float minimum, int step) { | |
if (step > decay_steps) { | |
step = decay_steps; | |
} | |
const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); | |
const float decay = (1 - minimum)*cosine_decay + minimum; | |
return decay; | |
} | |
float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) { | |
if (enable_restart) { | |
while (step > decay_steps) { | |
step -= decay_steps; | |
decay_steps = (int) restart_step_mult * decay_steps; | |
} | |
} | |
return cosine_decay(decay_steps, minimum, step); | |
} | |
struct train_params { | |
const char * fn_vocab_model; | |
const char * fn_train_data; | |
const char * fn_checkpoint_in; | |
const char * fn_checkpoint_out; | |
const char * fn_model_out; | |
uint32_t seed; | |
int n_ctx; | |
int n_embd; | |
int n_head; | |
int n_layer; | |
int n_ff; | |
int n_threads; | |
int n_batch; | |
int n_examples; | |
float f_norm_rms_eps; | |
float rope_freq_base; | |
float rope_freq_scale; | |
int print_info_interval; | |
bool samples_start_after_nl; | |
bool use_adam; | |
bool use_flash; | |
bool use_checkpointing; | |
bool use_alloc; | |
// only adam | |
int warmup; | |
int cos_decay_steps; | |
float cos_decay_restart; | |
float cos_decay_min; | |
bool enable_restart; | |
int opt_past; | |
float opt_delta; | |
int opt_max_no_improvement; | |
int lbfgs_n_iter; | |
int adam_n_iter; | |
float adam_alpha; | |
float adam_min_alpha; | |
float adam_decay; | |
int adam_decay_min_ndim; | |
float adam_beta1; | |
float adam_beta2; | |
float adam_gclip; | |
float adam_eps_f; | |
int mem_model_gb; | |
int mem_compute_gb; | |
int mem_compute0_gb; | |
}; | |
struct train_params get_default_train_params() { | |
struct train_params params; | |
params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; | |
params.fn_train_data = "shakespeare.txt"; | |
params.fn_checkpoint_in = "checkpoint.bin"; | |
params.fn_checkpoint_out = "checkpoint.bin"; | |
params.fn_model_out = "ggml-checkpoint-f32.bin"; | |
params.seed = -1; | |
params.n_ctx = 128; | |
params.n_embd = 256; | |
params.n_head = 8; | |
params.n_layer = 16; | |
params.n_ff = 768; | |
params.n_threads = 6; | |
params.n_batch = 8; | |
params.n_examples = 1; | |
params.f_norm_rms_eps = 1e-5; | |
params.rope_freq_base = 10000.0f; | |
params.rope_freq_scale = 1.0f; | |
params.print_info_interval = 1; | |
params.samples_start_after_nl = false; | |
params.use_adam = true; | |
params.use_flash = true; | |
params.use_checkpointing = true; | |
params.use_alloc = true; | |
params.opt_past = 0; | |
params.opt_delta = 1e-5f; | |
params.opt_max_no_improvement = 0; | |
// only adam | |
params.warmup = 100; | |
params.cos_decay_steps = 1000; | |
params.cos_decay_restart = 1.1f; | |
params.cos_decay_min = 0.1f; | |
params.enable_restart = false; | |
params.lbfgs_n_iter = 256; | |
params.adam_n_iter = 256; | |
params.adam_alpha = 1e-3f; | |
params.adam_min_alpha = 0; | |
params.adam_decay = 1e-1f; | |
params.adam_decay_min_ndim = 2; | |
params.adam_beta1 = 0.9f; | |
params.adam_beta2 = 0.999f; | |
params.adam_gclip = 1.0f; | |
params.adam_eps_f = 0.0f; | |
params.mem_model_gb = 2; | |
params.mem_compute_gb = 24; | |
params.mem_compute0_gb = 8; | |
return params; | |
} | |
void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { | |
fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "options:\n"); | |
fprintf(stderr, " -h, --help show this help message and exit\n"); | |
fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); | |
fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); | |
fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); | |
fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); | |
fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); | |
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); | |
fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); | |
fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); | |
fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff); | |
fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); | |
fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer); | |
fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); | |
fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); | |
fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); | |
fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); | |
fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); | |
fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); | |
fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); | |
fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); | |
fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); | |
fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); | |
fprintf(stderr, " --no-flash Don't use flash attention \n"); | |
fprintf(stderr, " --use-flash Use flash attention (default)\n"); | |
fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); | |
fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); | |
fprintf(stderr, " --no-alloc Don't use allocator\n"); | |
fprintf(stderr, " --use-alloc Use allocator (default)\n"); | |
fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); | |
fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); | |
fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); | |
fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); | |
fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); | |
fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); | |
fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); | |
fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); | |
fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); | |
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); | |
fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); | |
fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); | |
fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); | |
fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); | |
fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); | |
fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); | |
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); | |
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); | |
fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); | |
fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); | |
fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); | |
fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb); | |
fprintf(stderr, "\n"); | |
} | |
bool train_params_parse(int argc, char ** argv, struct train_params * params) { | |
bool invalid_param = false; | |
std::string arg; | |
struct train_params default_params = get_default_train_params(); | |
const std::string arg_prefix = "--"; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "--vocab-model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_vocab_model = argv[i]; | |
} else if (arg == "--train-data") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_train_data = argv[i]; | |
} else if (arg == "--checkpoint-in") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_checkpoint_in = argv[i]; | |
} else if (arg == "--checkpoint-out") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_checkpoint_out = argv[i]; | |
} else if (arg == "--model-out") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_model_out = argv[i]; | |
} else if (arg == "-s" || arg == "--seed") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->seed = std::stoi(argv[i]); | |
} else if (arg == "-c" || arg == "--ctx") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_ctx = std::stoi(argv[i]); | |
} else if (arg == "--embd") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_embd = std::stoi(argv[i]); | |
} else if (arg == "--ff") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_ff = std::stoi(argv[i]); | |
} else if (arg == "--head") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_head = std::stoi(argv[i]); | |
} else if (arg == "--layer") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_layer = std::stoi(argv[i]); | |
} else if (arg == "--norm-rms-eps") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->f_norm_rms_eps = std::stof(argv[i]); | |
} else if (arg == "--rope-freq-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->rope_freq_base = std::stof(argv[i]); | |
} else if (arg == "--rope-freq-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->rope_freq_scale = std::stof(argv[i]); | |
} else if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_threads = std::stoi(argv[i]); | |
} else if (arg == "-b" || arg == "--batch") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_batch = std::stoi(argv[i]); | |
} else if (arg == "-n" || arg == "--examples") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_examples = std::stoi(argv[i]); | |
} else if (arg == "--print-info-interval") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->print_info_interval = std::stoi(argv[i]); | |
} else if (arg == "--samples-after-nl") { | |
params->samples_start_after_nl = true; | |
} else if (arg == "--use-lbfgs") { | |
params->use_adam = false; | |
} else if (arg == "--use-adam") { | |
params->use_adam = true; | |
} else if (arg == "--no-flash") { | |
params->use_flash = false; | |
} else if (arg == "--use-flash") { | |
params->use_flash = true; | |
} else if (arg == "--no-checkpointing") { | |
params->use_checkpointing = false; | |
} else if (arg == "--use-checkpointing") { | |
params->use_checkpointing = true; | |
} else if (arg == "--no-alloc") { | |
params->use_alloc = false; | |
} else if (arg == "--use-alloc") { | |
params->use_alloc = true; | |
} else if (arg == "--warmup") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->warmup = std::stoi(argv[i]); | |
} else if (arg == "--cos-decay-steps") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->cos_decay_steps = std::stof(argv[i]); | |
} else if (arg == "--cos-decay-restart") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->cos_decay_restart = std::stof(argv[i]); | |
} else if (arg == "--cos-decay-min") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->cos_decay_min = std::stof(argv[i]); | |
} else if (arg == "--enable-restart") { | |
params->enable_restart = true; | |
} else if (arg == "--disable-restart") { | |
params->enable_restart = false; | |
} else if (arg == "--opt-past") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->opt_past = std::stoi(argv[i]); | |
} else if (arg == "--opt-delta") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->opt_delta = std::stof(argv[i]); | |
} else if (arg == "--opt-max-no-improvement") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->opt_max_no_improvement = std::stoi(argv[i]); | |
} else if (arg == "--adam-epsf") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_eps_f = std::stof(argv[i]); | |
} else if (arg == "--adam-iter") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_n_iter = std::stoi(argv[i]); | |
} else if (arg == "--adam-alpha") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_alpha = std::stof(argv[i]); | |
} else if (arg == "--adam-min-alpha") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_min_alpha = std::stof(argv[i]); | |
} else if (arg == "--adam-decay") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_decay = std::stof(argv[i]); | |
} else if (arg == "--adam-decay-min-ndim") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_decay_min_ndim = std::stoi(argv[i]); | |
} else if (arg == "--adam-beta1") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_beta1 = std::stof(argv[i]); | |
} else if (arg == "--adam-beta2") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_beta2 = std::stof(argv[i]); | |
} else if (arg == "--adam-gclip") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->adam_gclip = std::stof(argv[i]); | |
} else if (arg == "--lbfgs-iter") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->lbfgs_n_iter = std::stoi(argv[i]); | |
} else if (arg == "--mem-model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->mem_model_gb = std::stoi(argv[i]); | |
} else if (arg == "--mem-compute") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->mem_compute_gb = std::stoi(argv[i]); | |
} else if (arg == "--mem-compute0") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->mem_compute0_gb = std::stoi(argv[i]); | |
} else if (arg == "-h" || arg == "--help") { | |
train_print_usage(argc, argv, &default_params); | |
exit(0); | |
} else { | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
train_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
train_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
return true; | |
} | |
struct opt_callback_data { | |
struct train_params * params; | |
struct ggml_opt_context * opt; | |
struct llama_context * lctx; | |
llama_token * tokens_data; | |
size_t tokens_size; | |
int * samples_data; | |
size_t samples_size; | |
int shuffle_countdown; | |
struct ggml_tensor * tokens_input; | |
struct ggml_tensor * target_logits; | |
struct ggml_tensor * target_probs; | |
}; | |
void opt_callback(void * vdata, float * sched) { | |
struct opt_callback_data * data = (struct opt_callback_data *) vdata; | |
struct train_params * params = data->params; | |
struct ggml_opt_context * opt = data->opt; | |
int n_batch = params->n_batch; | |
*sched = (opt->iter < params->warmup) | |
? (float) opt->iter / (float) params->warmup | |
: cosine_decay_restart( | |
params->cos_decay_steps, | |
params->cos_decay_min, | |
opt->iter - params->warmup, | |
params->cos_decay_restart, | |
params->enable_restart); | |
float min_sched = params->adam_min_alpha / params->adam_alpha; | |
*sched = min_sched + *sched * (1.0f - min_sched); | |
int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f); | |
printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); | |
if (data->shuffle_countdown < n_batch) { | |
printf("%s: reshuffle samples\n", __func__); | |
shuffle_ints(data->samples_data, data->samples_data + data->samples_size); | |
for (int i = 0; i < (int) data->samples_size; ++i) { | |
GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size); | |
} | |
data->shuffle_countdown = data->samples_size; | |
} | |
get_example_targets_batch( | |
data->lctx, | |
data->samples_data, | |
data->samples_size, | |
data->tokens_data, | |
data->tokens_size, | |
opt->iter, | |
data->tokens_input, | |
data->target_logits, | |
data->target_probs); | |
data->shuffle_countdown -= n_batch; | |
} | |
int main(int argc, char ** argv) { | |
struct train_params params = get_default_train_params(); | |
if (!train_params_parse(argc, argv, ¶ms)) { | |
return 1; | |
} | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
printf("%s: seed: %u\n", __func__, params.seed); | |
srand(params.seed); | |
struct llama_context_params llama_params = llama_context_default_params(); | |
llama_params.vocab_only = true; | |
struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); | |
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); | |
printf("%s: tokenize training data\n", __func__); | |
std::vector<llama_token> train_tokens; | |
if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { | |
fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); | |
} | |
printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); | |
struct my_llama_model model; | |
model.hparams.n_vocab = llama_n_vocab(lctx); | |
model.hparams.n_ctx = params.n_ctx; | |
model.hparams.n_embd = params.n_embd; | |
model.hparams.n_head = params.n_head; | |
model.hparams.n_layer = params.n_layer; | |
model.hparams.n_ff = params.n_ff; | |
// llama.cpp requires n_rot to be exactly n_embd / n_head | |
model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head; | |
model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; | |
model.hparams.rope_freq_base = params.rope_freq_base; | |
model.hparams.rope_freq_scale = params.rope_freq_scale; | |
print_params(&model.hparams); | |
std::vector<size_t> token_noccurs; | |
std::vector<bool> token_notavail; | |
token_noccurs.resize(model.hparams.n_vocab, 0); | |
token_notavail.resize(model.hparams.n_vocab, true); | |
for (int i = 0; i < (int) train_tokens.size(); ++i) { | |
++token_noccurs[train_tokens[i]]; | |
token_notavail[train_tokens[i]] = false; | |
} | |
std::vector<float> token_freq; | |
token_freq.resize(model.hparams.n_vocab, 0); | |
int n_unique_tokens = 0; | |
for (int i = 0; i < (int) token_noccurs.size(); ++i) { | |
token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size(); | |
n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0; | |
} | |
printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); | |
struct ggml_init_params lcparams; | |
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); | |
lcparams.mem_buffer = NULL; | |
lcparams.no_alloc = false; | |
model.ctx = ggml_init(lcparams); | |
int n_tokens = model.hparams.n_ctx; | |
int n_vocab = model.hparams.n_vocab; | |
int n_batch = params.n_batch; | |
struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); | |
memset(opt, 0, sizeof(struct ggml_opt_context)); | |
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); | |
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); | |
opt_params_adam.print_forward_graph = false; | |
opt_params_adam.print_backward_graph = false; | |
opt_params_adam.n_threads = params.n_threads; | |
opt_params_adam.past = params.opt_past; | |
opt_params_adam.delta = params.opt_delta; | |
opt_params_adam.max_no_improvement = params.opt_max_no_improvement; | |
opt_params_adam.adam.n_iter = params.adam_n_iter; | |
opt_params_adam.adam.sched = 1.0f; | |
opt_params_adam.adam.alpha = params.adam_alpha; | |
opt_params_adam.adam.decay = params.adam_decay; | |
opt_params_adam.adam.decay_min_ndim = params.adam_decay_min_ndim; | |
opt_params_adam.adam.beta1 = params.adam_beta1; | |
opt_params_adam.adam.beta2 = params.adam_beta2; | |
opt_params_adam.adam.gclip = params.adam_gclip; | |
opt_params_adam.adam.eps_f = params.adam_eps_f; | |
opt_params_lbfgs.print_forward_graph = false; | |
opt_params_lbfgs.print_backward_graph = false; | |
opt_params_lbfgs.n_threads = params.n_threads; | |
opt_params_adam.past = params.opt_past; | |
opt_params_adam.delta = params.opt_delta; | |
opt_params_adam.max_no_improvement = params.opt_max_no_improvement; | |
opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; | |
opt->ctx = model.ctx; | |
opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; | |
printf("%s: init model\n", __func__); | |
bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt); | |
if (!existed) { | |
init_model(&model); | |
} | |
set_param_model(&model); | |
opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; | |
opt->iter = model.train_its; | |
printf("%s: opt iter %d\n", __func__, opt->iter); | |
bool from_scratch = !existed; | |
if (from_scratch) { | |
randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); | |
} | |
printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx)); | |
// ggml_print_tensor_objects(model.ctx); | |
// TODO: use std::vector<uint8_t> intead of "new" | |
size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); | |
uint8_t * compute_addr = new uint8_t[compute_size]; | |
size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); | |
uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; | |
ggml_allocr * alloc = NULL; | |
if (params.use_alloc) { | |
static const size_t tensor_alignment = 32; | |
alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment); | |
} | |
GGML_ASSERT(n_tokens < (int) train_tokens.size()); | |
std::vector<int> train_samples; | |
train_samples.push_back(0); | |
for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { | |
if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) { | |
train_samples.push_back(i); | |
} | |
} | |
shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); | |
for (int i = 0; i < (int) train_samples.size(); ++i) { | |
GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); | |
} | |
printf("%s: begin training\n", __func__); | |
struct opt_callback_data opt_cb_data; | |
opt_cb_data.params = ¶ms; | |
opt_cb_data.opt = opt; | |
opt_cb_data.lctx = lctx; | |
opt_cb_data.tokens_data = train_tokens.data(); | |
opt_cb_data.tokens_size = train_tokens.size(); | |
opt_cb_data.samples_data = train_samples.data(); | |
opt_cb_data.samples_size = train_samples.size(); | |
opt_cb_data.shuffle_countdown = train_samples.size(); | |
opt_cb_data.tokens_input = NULL; | |
opt_cb_data.target_logits = NULL; | |
opt_cb_data.target_probs = NULL; | |
int64_t t0 = ggml_time_ms(); | |
for (int ex = 0; ex < params.n_examples; ++ex) { | |
if (ex*n_batch >= (int) train_samples.size()) { | |
shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); | |
for (int i = 0; i < (int) train_samples.size(); ++i) { | |
GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); | |
} | |
} | |
struct ggml_init_params cparams = { | |
compute_size, // mem_size | |
compute_addr, // mem_buffer | |
false, // no_alloc | |
}; | |
struct ggml_context * ctx0 = ggml_init(cparams); | |
ggml_set_no_alloc(ctx0, false); | |
// don't use alloc for input tensors, so we can safely fill them with data | |
//struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); | |
//struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); | |
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); | |
struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); | |
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); | |
ggml_set_no_alloc(ctx0, (alloc != NULL)); | |
if (alloc) { | |
ggml_allocr_reset(alloc); | |
} | |
opt_cb_data.tokens_input = tokens_input; | |
opt_cb_data.target_logits = target_logits; | |
opt_cb_data.target_probs = target_probs; | |
int n_past = 0; | |
struct ggml_cgraph * gf = ggml_new_graph(ctx0); | |
struct ggml_cgraph * gb = ggml_new_graph(ctx0); | |
struct ggml_cgraph * gb_tmp = params.use_checkpointing | |
? ggml_new_graph(ctx0) | |
: NULL; | |
GGML_ASSERT(n_past == 0); | |
struct ggml_tensor * loss = NULL; | |
struct ggml_tensor * logits = NULL; | |
loss = llama_build_train_graphs( | |
&model, alloc, ctx0, | |
gf, gb, gb_tmp, | |
&logits, tokens_input, target_probs, | |
n_tokens, n_batch, | |
params.use_flash, | |
params.use_checkpointing | |
); | |
size_t used_mem_before_opt = ggml_used_mem(ctx0); | |
opt->params.adam.sched = (opt->iter < params.warmup) | |
? (float) opt->iter / (float) params.warmup | |
: cosine_decay_restart( | |
params.cos_decay_steps, | |
params.cos_decay_min, | |
opt->iter - params.warmup, | |
params.cos_decay_restart, | |
params.enable_restart); | |
float min_sched = params.adam_min_alpha / params.adam_alpha; | |
opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched); | |
printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); | |
ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data); | |
size_t used_mem_after_opt = ggml_used_mem(ctx0); | |
int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter; | |
model.train_its = opt->iter; | |
model.train_samples += n_batch * n_iter; | |
model.train_tokens += n_batch * n_tokens * n_iter; | |
if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { | |
printf("Example %d, opt iter %d\n", ex, opt->iter); | |
printf("error_before_opt: %.6f\n", opt->loss_before); | |
printf("error_after_opt: %.6f\n", opt->loss_after); | |
printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); | |
printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); | |
} | |
ggml_free(ctx0); | |
} | |
int64_t t1 = ggml_time_ms(); | |
int64_t d = t1-t0; | |
double dd = (double) d * 1e-3; | |
printf("%s: total training time=%f seconds\n", __func__, dd); | |
if (params.n_examples > 0) { | |
save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt); | |
} | |
if (strlen(params.fn_model_out) > 0) { | |
save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model); | |
} | |
if (alloc) { | |
ggml_allocr_free(alloc); | |
} | |
delete[] compute_addr; | |
delete[] compute_buf_0; | |
ggml_free(model.ctx); | |
llama_free(lctx); | |
llama_free_model(lmodel); | |
return 0; | |
} | |