Imadsarvm commited on
Commit
8a70686
·
verified ·
1 Parent(s): 4c3647c
Files changed (1) hide show
  1. app.py +68 -65
app.py CHANGED
@@ -3,95 +3,98 @@ import torch
3
  import torch.nn.functional as F
4
  from torchvision.transforms.functional import normalize
5
  import gradio as gr
 
6
  from briarmbg import BriaRMBG
7
  import PIL
8
  from PIL import Image
9
  from typing import Tuple
10
- import requests
11
- from io import BytesIO
12
 
13
  net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  net.to(device)
16
 
 
17
  def resize_image(image):
18
  image = image.convert('RGB')
19
  model_input_size = (1024, 1024)
20
  image = image.resize(model_input_size, Image.BILINEAR)
21
  return image
22
 
23
- def get_url_image(url):
24
- headers = {'User-Agent': 'gradio-app'}
25
- response = requests.get(url, headers=headers)
26
- print(f"Response status code: {response.status_code}")
27
- response.raise_for_status() # Raise an error for bad status codes
28
- return BytesIO(response.content)
29
 
30
- def load_image(image_source):
31
- try:
32
- if isinstance(image_source, str): # Check if input is a URL
33
- print(f"Loading image from URL: {image_source}")
34
- image = Image.open(get_url_image(image_source))
35
- else:
36
- print("Loading image from file upload")
37
- image = Image.fromarray(image_source)
38
- print("Image loaded successfully")
39
- return image
40
- except Exception as e:
41
- print(f"Error loading image: {e}")
42
- raise
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- def process(image_source):
45
- try:
46
- print("Processing image")
47
- # Load and prepare input
48
- orig_image = load_image(image_source)
49
- w, h = orig_im_size = orig_image.size
50
- image = resize_image(orig_image)
51
- im_np = np.array(image)
52
- im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
53
- im_tensor = torch.unsqueeze(im_tensor, 0)
54
- im_tensor = torch.divide(im_tensor, 255.0)
55
- im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
56
- if torch.cuda.is_available():
57
- im_tensor = im_tensor.cuda()
58
 
59
- # Inference
60
- result = net(im_tensor)
61
- # Post-process
62
- result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
63
- ma = torch.max(result)
64
- mi = torch.min(result)
65
- result = (result - mi) / (ma - mi)
66
- # Image to PIL
67
- im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
68
- pil_im = Image.fromarray(np.squeeze(im_array))
69
- # Paste the mask on the original image
70
- new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
71
- new_im.paste(orig_image, mask=pil_im)
72
- print("Image processed successfully")
73
- return new_im
74
- except Exception as e:
75
- print(f"Error during processing: {e}")
76
- return f"Error: {e}"
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  title = "Background Removal"
79
  description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
80
  For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
81
  """
82
  examples = [['./input.jpg'],]
83
-
84
- demo = gr.Interface(
85
- fn=process,
86
- inputs=[
87
- gr.Image(type="numpy", label="Upload Image"),
88
- gr.Textbox(label="Image URL")
89
- ],
90
- outputs="image",
91
- examples=examples,
92
- title=title,
93
- description=description
94
- )
95
 
96
  if __name__ == "__main__":
97
  demo.launch(share=False)
 
3
  import torch.nn.functional as F
4
  from torchvision.transforms.functional import normalize
5
  import gradio as gr
6
+ from gradio_imageslider import ImageSlider
7
  from briarmbg import BriaRMBG
8
  import PIL
9
  from PIL import Image
10
  from typing import Tuple
11
+
 
12
 
13
  net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  net.to(device)
16
 
17
+
18
  def resize_image(image):
19
  image = image.convert('RGB')
20
  model_input_size = (1024, 1024)
21
  image = image.resize(model_input_size, Image.BILINEAR)
22
  return image
23
 
 
 
 
 
 
 
24
 
25
+ def process(image):
26
+
27
+ # prepare input
28
+ orig_image = Image.fromarray(image)
29
+ w,h = orig_im_size = orig_image.size
30
+ image = resize_image(orig_image)
31
+ im_np = np.array(image)
32
+ im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
33
+ im_tensor = torch.unsqueeze(im_tensor,0)
34
+ im_tensor = torch.divide(im_tensor,255.0)
35
+ im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
36
+ if torch.cuda.is_available():
37
+ im_tensor=im_tensor.cuda()
38
+
39
+ #inference
40
+ result=net(im_tensor)
41
+ # post process
42
+ result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
43
+ ma = torch.max(result)
44
+ mi = torch.min(result)
45
+ result = (result-mi)/(ma-mi)
46
+ # image to pil
47
+ im_array = (result*255).cpu().data.numpy().astype(np.uint8)
48
+ pil_im = Image.fromarray(np.squeeze(im_array))
49
+ # paste the mask on the original image
50
+ new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
51
+ new_im.paste(orig_image, mask=pil_im)
52
+ # new_orig_image = orig_image.convert('RGBA')
53
+
54
+ return new_im
55
+ # return [new_orig_image, new_im]
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # block = gr.Blocks().queue()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ # with block:
61
+ # gr.Markdown("## BRIA RMBG 1.4")
62
+ # gr.HTML('''
63
+ # <p style="margin-bottom: 10px; font-size: 94%">
64
+ # This is a demo for BRIA RMBG 1.4 that using
65
+ # <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
66
+ # </p>
67
+ # ''')
68
+ # with gr.Row():
69
+ # with gr.Column():
70
+ # input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
71
+ # # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
72
+ # run_button = gr.Button(value="Run")
73
+
74
+ # with gr.Column():
75
+ # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
76
+ # ips = [input_image]
77
+ # run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
78
+
79
+ # block.launch(debug = True)
80
+
81
+ # block = gr.Blocks().queue()
82
+
83
+ gr.Markdown("## BRIA RMBG 1.4")
84
+ gr.HTML('''
85
+ <p style="margin-bottom: 10px; font-size: 94%">
86
+ This is a demo for BRIA RMBG 1.4 that using
87
+ <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
88
+ </p>
89
+ ''')
90
  title = "Background Removal"
91
  description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
92
  For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
93
  """
94
  examples = [['./input.jpg'],]
95
+ # output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
96
+ # demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
97
+ demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
 
 
 
 
 
 
 
 
 
98
 
99
  if __name__ == "__main__":
100
  demo.launch(share=False)