Spaces:
Runtime error
Runtime error
File size: 4,968 Bytes
5d52c32 6c226f9 8e787d3 6c226f9 d790c0b 88183ad 6c226f9 2362603 9d6fa91 66efbc3 d790c0b 6c226f9 5d52c32 3c0cd8e 70a1cf7 6c226f9 3c0cd8e 6c226f9 d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 3c0cd8e d790c0b 5d52c32 66efbc3 6c226f9 66efbc3 d790c0b 6c226f9 b97a3c2 0a7fcda 3c0cd8e 6c226f9 47407ef 6c226f9 39976b3 4671ef8 3c0cd8e 70a1cf7 3c0cd8e 70a1cf7 3c0cd8e 39976b3 4671ef8 6c226f9 70a1cf7 6c226f9 70a1cf7 6c226f9 7097513 4671ef8 7097513 6c226f9 70a1cf7 6c226f9 4671ef8 70a1cf7 6c226f9 70a1cf7 6c226f9 47407ef 7097513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("Нет аудиофайла! Пожалуйста, загрузите аудиофайл перед запросом.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
@spaces.GPU
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["Распознать"], label="Task", value="transcribe"),
],
outputs="text",
title="Транскрибация аудио с помощью модели Whisper 3 от OpenAI",
description=(
"Текстовая транскрибация записи с вашего микрофона нажатием одной кнопки! Попробуйте сейчас!"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["Распознать"], label="Task", value="transcribe"),
],
outputs="text",
title="Транскрибация аудио с помощью модели Whisper 3 от OpenAI",
description=(
"Текстовая транскрибация аудиофайла нажатием одной кнопки! Попробуйте сейчас!"
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Вставьте ссылку на YouTube видео сюда", label="YouTube URL"),
gr.Radio(["Распознать"], label="Task", value="transcribe")
],
outputs=["html", "text"],
title="Транскрибация YouTube с помощью модели Whisper 3 от OpenAI",
description=(
"Текстовая транскрибация видео с Youtube нажатием одной кнопки! Попробуйте сейчас!"
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Микрофон", "Аудиофайл", "YouTube"])
demo.queue().launch(ssr_mode=False)
|