AchilleSoulieID's picture
improve model comparion
6187a64
raw
history blame
12.1 kB
"""Folding Studio Demo App."""
import logging
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from folding_studio_data_models import FoldingModel
from gradio_molecule3d import Molecule3D
from folding_studio_demo.correlate import (
SCORE_COLUMN_NAMES,
SCORE_COLUMNS,
compute_correlation_data,
fake_predict_and_correlate,
get_score_description,
make_regression_plot,
plot_correlation_ranking,
)
from folding_studio_demo.predict import filter_predictions, predict, predict_comparison
logger = logging.getLogger(__name__)
MOLECULE_REPS = [
{
"model": 0,
# "chain": "",
# "resname": "",
"style": "cartoon",
"color": "alphafold",
# "residue_range": "",
"around": 0,
"byres": False,
# "visible": False,
# "opacity": 0.5
}
]
MODEL_CHOICES = [
# ("AlphaFold2", FoldingModel.AF2),
# ("OpenFold", FoldingModel.OPENFOLD),
# ("SoloSeq", FoldingModel.SOLOSEQ),
("Boltz-1", FoldingModel.BOLTZ),
("Chai-1", FoldingModel.CHAI),
("Protenix", FoldingModel.PROTENIX),
]
DEFAULT_SEQ = "MALWMRLLPLLALLALWGPDPAAA"
MODEL_EXAMPLES = {
FoldingModel.BOLTZ: [
["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
],
FoldingModel.CHAI: [
["Monomer", f">protein|name=A\n{DEFAULT_SEQ}"],
["Multimer", f">protein|name=A\n{DEFAULT_SEQ}\n>protein|name=B\n{DEFAULT_SEQ}"],
],
FoldingModel.PROTENIX: [
["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
],
}
def sequence_input(dropdown: gr.Dropdown | None = None) -> gr.Textbox:
"""Sequence input component.
Returns:
gr.Textbox: Sequence input component
"""
sequence = gr.Textbox(
label="Protein Sequence",
lines=2,
placeholder="Enter a protein sequence or upload a FASTA file",
)
dummy = gr.Textbox(label="Complex type", visible=False)
examples = gr.Examples(
examples=MODEL_EXAMPLES[FoldingModel.BOLTZ],
inputs=[dummy, sequence],
)
if dropdown is not None:
dropdown.change(
fn=lambda x: gr.Dataset(samples=MODEL_EXAMPLES[x]),
inputs=[dropdown],
outputs=[examples.dataset],
)
file_input = gr.File(
label="Upload a FASTA file",
file_types=[".fasta", ".fa"],
)
def _process_file(file: gr.File | None) -> gr.Textbox:
if file is None:
return gr.Textbox()
try:
with open(file.name, "r") as f:
content = f.read().strip()
return gr.Textbox(value=content)
except Exception as e:
logger.error(f"Error reading file: {e}")
return gr.Textbox()
file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence])
return sequence
def simple_prediction(api_key: str) -> None:
"""Simple prediction tab.
Args:
api_key (str): Folding Studio API key
"""
gr.Markdown(
"""
### Predict a Protein Structure
It will be run in the background and the results will be displayed in the output section.
The output will contain the protein structure and the pLDDT plot.
Select a model to run the inference with and enter a protein sequence or upload a FASTA file.
"""
)
with gr.Row():
dropdown = gr.Dropdown(
label="Model",
choices=MODEL_CHOICES,
scale=0,
value=FoldingModel.BOLTZ,
)
with gr.Column():
sequence = sequence_input(dropdown)
predict_btn = gr.Button(
"Predict",
elem_classes="gradient-button",
elem_id="predict-btn",
variant="primary",
)
with gr.Row():
mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS)
metrics_plot = gr.Plot(label="pLDDT")
predict_btn.click(
fn=predict,
inputs=[sequence, api_key, dropdown],
outputs=[mol_output, metrics_plot],
)
def model_comparison(api_key: str) -> None:
"""Model comparison tab.
Args:
api_key (str): Folding Studio API key
"""
with gr.Row():
models = gr.CheckboxGroup(
label="Model",
choices=MODEL_CHOICES,
scale=0,
min_width=300,
value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX],
)
with gr.Column():
sequence = sequence_input()
predict_btn = gr.Button(
"Compare Models",
elem_classes=["gradient-button"],
elem_id="compare-models-btn",
variant="primary",
)
with gr.Row():
chai_predictions = gr.CheckboxGroup(label="Chai", visible=False)
protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False)
boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False)
with gr.Row():
mol_outputs = Molecule3D(
label="Protein Structure", reps=MOLECULE_REPS, height=1000
)
metrics_plot = gr.Plot(label="pLDDT")
# Store the initial predictions
aligned_paths = gr.State()
plddt_fig = gr.State()
predict_btn.click(
fn=predict_comparison,
inputs=[sequence, api_key, models],
outputs=[
chai_predictions,
boltz_predictions,
protenix_predictions,
aligned_paths,
plddt_fig,
],
)
# Handle checkbox changes
for checkbox in [chai_predictions, boltz_predictions, protenix_predictions]:
checkbox.change(
fn=filter_predictions,
inputs=[
aligned_paths,
plddt_fig,
chai_predictions,
boltz_predictions,
protenix_predictions,
],
outputs=[mol_outputs, metrics_plot],
)
def create_correlation_tab():
gr.Markdown("# Correlation with experimental binding affinity data")
gr.Markdown("""
This analysis explores the relationship between protein folding model confidence scores and experimental binding affinity data.
The experimental dataset contains binding affinity measurements (KD in nM) between antibody-antigen pairs.
Each data point includes:
- The antibody's light and heavy chain sequences
- The antigen sequence
- The experimental KD value
The analysis involves submitting these sequences to protein folding models for 3D structure prediction.
The models generate various confidence scores for each prediction. These scores are then correlated
with the experimental binding affinity measurements to evaluate their effectiveness as predictors
of binding strength.
""")
spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
spr_data_with_scores = spr_data_with_scores.rename(columns=SCORE_COLUMN_NAMES)
prettified_columns = {
"antibody_name": "Antibody Name",
"KD (nM)": "KD (nM)",
"antibody_vh_sequence": "Antibody VH Sequence",
"antibody_vl_sequence": "Antibody VL Sequence",
"antigen_sequence": "Antigen Sequence",
}
spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
with gr.Row():
columns = [
"Antibody Name",
"KD (nM)",
"Antibody VH Sequence",
"Antibody VL Sequence",
"Antigen Sequence",
]
# Display dataframe with floating point values rounded to 2 decimal places
spr_data = gr.DataFrame(
value=spr_data_with_scores[columns].round(2),
label="Experimental Antibody-Antigen Binding Affinity Data",
)
gr.Markdown("# Prediction and correlation")
with gr.Row():
fake_predict_btn = gr.Button(
"Predict structures of all complexes",
elem_classes="gradient-button",
variant="primary",
)
with gr.Row():
prediction_dataframe = gr.Dataframe(label="Predicted Structures Data")
with gr.Row():
with gr.Row():
correlation_type = gr.Radio(
choices=["Spearman", "Pearson", "RΒ²"],
value="Spearman",
label="Correlation Type",
interactive=True,
)
with gr.Row():
correlation_ranking_plot = gr.Plot(label="Correlation ranking")
with gr.Row():
with gr.Column():
with gr.Row():
# User can select the columns to display in the correlation plot
correlation_column = gr.Dropdown(
label="Score data to display",
choices=SCORE_COLUMNS,
multiselect=False,
value=SCORE_COLUMNS[0],
)
# Add checkbox for log scale and update plot when either input changes
with gr.Row():
log_scale = gr.Checkbox(
label="Display x-axis on logarithmic scale", value=False
)
with gr.Row():
score_description = gr.Markdown(
get_score_description(correlation_column.value)
)
correlation_column.change(
fn=lambda x: get_score_description(x),
inputs=correlation_column,
outputs=score_description,
)
with gr.Column():
correlation_plot = gr.Plot(label="Correlation with binding affinity")
fake_predict_btn.click(
fn=lambda x: fake_predict_and_correlate(
spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"]
),
inputs=[correlation_type],
outputs=[prediction_dataframe, correlation_ranking_plot, correlation_plot],
)
def update_regression_plot(score, use_log):
return make_regression_plot(spr_data_with_scores, score, use_log)
def update_correlation_plot(correlation_type):
logger.info(f"Updating correlation plot for {correlation_type}")
corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS)
logger.info(f"Correlation data: {corr_data}")
return plot_correlation_ranking(corr_data, correlation_type)
correlation_column.change(
fn=update_regression_plot,
inputs=[correlation_column, log_scale],
outputs=correlation_plot,
)
correlation_type.change(
fn=update_correlation_plot,
inputs=[correlation_type],
outputs=correlation_ranking_plot,
)
log_scale.change(
fn=update_regression_plot,
inputs=[correlation_column, log_scale],
outputs=correlation_plot,
)
def __main__():
theme = gr.themes.Ocean(
primary_hue="blue",
secondary_hue="purple",
)
with gr.Blocks(theme=theme, title="Folding Studio Demo") as demo:
gr.Markdown(
"""
# Folding Studio: Harness the Power of Protein Folding 🧬
Folding Studio is a platform for protein structure prediction.
It uses the latest AI-powered folding models to predict the structure of a protein.
Available models are : AlphaFold2, OpenFold, SoloSeq, Boltz-1, Chai and Protenix.
## API Key
To use the Folding Studio API, you need to provide an API key.
You can get your API key by asking to the Folding Studio team.
"""
)
api_key = gr.Textbox(label="Folding Studio API Key", type="password")
gr.Markdown("## Demo Usage")
with gr.Tab("πŸš€ Simple Prediction"):
simple_prediction(api_key)
with gr.Tab("πŸ“Š Model Comparison"):
model_comparison(api_key)
with gr.Tab("πŸ” Correlations"):
create_correlation_tab()
demo.launch()