Use SPR data with adjusted scores

#12
by jfaustin - opened
folding_studio_demo/app.py CHANGED
@@ -39,8 +39,8 @@ MOLECULE_REPS = [
39
 
40
 
41
  MODEL_CHOICES = [
42
- # ("AlphaFold2", FoldingModel.AF2),
43
- # ("OpenFold", FoldingModel.OPENFOLD),
44
  # ("SoloSeq", FoldingModel.SOLOSEQ),
45
  ("Boltz-1", FoldingModel.BOLTZ),
46
  ("Chai-1", FoldingModel.CHAI),
@@ -49,6 +49,15 @@ MODEL_CHOICES = [
49
 
50
  DEFAULT_SEQ = "MALWMRLLPLLALLALWGPDPAAA"
51
  MODEL_EXAMPLES = {
 
 
 
 
 
 
 
 
 
52
  FoldingModel.BOLTZ: [
53
  ["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
54
  ["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
@@ -70,27 +79,31 @@ def sequence_input(dropdown: gr.Dropdown | None = None) -> gr.Textbox:
70
  Returns:
71
  gr.Textbox: Sequence input component
72
  """
73
- sequence = gr.Textbox(
74
- label="Protein Sequence",
75
- lines=2,
76
- placeholder="Enter a protein sequence or upload a FASTA file",
77
- )
78
- dummy = gr.Textbox(label="Complex type", visible=False)
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
- examples = gr.Examples(
81
- examples=MODEL_EXAMPLES[FoldingModel.BOLTZ],
82
- inputs=[dummy, sequence],
83
- )
84
  if dropdown is not None:
85
  dropdown.change(
86
  fn=lambda x: gr.Dataset(samples=MODEL_EXAMPLES[x]),
87
  inputs=[dropdown],
88
  outputs=[examples.dataset],
89
  )
90
- file_input = gr.File(
91
- label="Upload a FASTA file",
92
- file_types=[".fasta", ".fa"],
93
- )
94
 
95
  def _process_file(file: gr.File | None) -> gr.Textbox:
96
  if file is None:
@@ -115,7 +128,7 @@ def simple_prediction(api_key: str) -> None:
115
  """
116
  gr.Markdown(
117
  """
118
- ### Predict a Protein Structure
119
 
120
  It will be run in the background and the results will be displayed in the output section.
121
  The output will contain the protein structure and the pLDDT plot.
@@ -157,7 +170,19 @@ def model_comparison(api_key: str) -> None:
157
  Args:
158
  api_key (str): Folding Studio API key
159
  """
 
 
 
160
 
 
 
 
 
 
 
 
 
 
161
  with gr.Row():
162
  models = gr.CheckboxGroup(
163
  label="Model",
@@ -176,6 +201,9 @@ def model_comparison(api_key: str) -> None:
176
  variant="primary",
177
  )
178
  with gr.Row():
 
 
 
179
  chai_predictions = gr.CheckboxGroup(label="Chai", visible=False)
180
  protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False)
181
  boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False)
@@ -186,28 +214,50 @@ def model_comparison(api_key: str) -> None:
186
  metrics_plot = gr.Plot(label="pLDDT")
187
 
188
  # Store the initial predictions
189
- aligned_paths = gr.State()
190
- plddt_fig = gr.State()
191
 
192
  predict_btn.click(
193
  fn=predict_comparison,
194
  inputs=[sequence, api_key, models],
195
  outputs=[
 
 
 
 
196
  chai_predictions,
197
  boltz_predictions,
198
  protenix_predictions,
199
- aligned_paths,
200
- plddt_fig,
201
  ],
 
 
 
 
 
 
 
 
 
 
 
 
202
  )
203
 
204
  # Handle checkbox changes
205
- for checkbox in [chai_predictions, boltz_predictions, protenix_predictions]:
 
 
 
 
 
 
 
206
  checkbox.change(
207
  fn=filter_predictions,
208
  inputs=[
209
- aligned_paths,
210
- plddt_fig,
 
 
211
  chai_predictions,
212
  boltz_predictions,
213
  protenix_predictions,
@@ -242,99 +292,114 @@ def create_correlation_tab():
242
  "antigen_sequence": "Antigen Sequence",
243
  }
244
  spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
245
- with gr.Row():
246
- columns = [
247
- "Antibody Name",
248
- "KD (nM)",
249
- "Antibody VH Sequence",
250
- "Antibody VL Sequence",
251
- "Antigen Sequence",
252
- ]
253
- # Display dataframe with floating point values rounded to 2 decimal places
254
- spr_data = gr.DataFrame(
255
- value=spr_data_with_scores[columns].round(2),
256
- label="Experimental Antibody-Antigen Binding Affinity Data",
257
- )
258
 
259
  gr.Markdown("# Prediction and correlation")
260
- with gr.Row():
261
- fake_predict_btn = gr.Button(
262
- "Predict structures of all complexes",
263
- elem_classes="gradient-button",
264
- variant="primary",
265
- )
266
- with gr.Row():
267
- prediction_dataframe = gr.Dataframe(label="Predicted Structures Data")
268
- with gr.Row():
269
- with gr.Row():
270
- correlation_type = gr.Radio(
271
- choices=["Spearman", "Pearson", "R²"],
272
- value="Spearman",
273
- label="Correlation Type",
274
- interactive=True,
275
- )
276
- with gr.Row():
277
- correlation_ranking_plot = gr.Plot(label="Correlation ranking")
278
- with gr.Row():
279
- with gr.Column():
280
  with gr.Row():
281
- # User can select the columns to display in the correlation plot
282
- correlation_column = gr.Dropdown(
283
- label="Score data to display",
284
- choices=SCORE_COLUMNS,
285
- multiselect=False,
286
- value=SCORE_COLUMNS[0],
287
  )
288
- # Add checkbox for log scale and update plot when either input changes
289
  with gr.Row():
290
  log_scale = gr.Checkbox(
291
- label="Display x-axis on logarithmic scale", value=False
292
- )
293
- with gr.Row():
294
- score_description = gr.Markdown(
295
- get_score_description(correlation_column.value)
296
- )
297
- correlation_column.change(
298
- fn=lambda x: get_score_description(x),
299
- inputs=correlation_column,
300
- outputs=score_description,
301
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
  with gr.Column():
303
  regression_plot = gr.Plot(label="Correlation with binding affinity")
304
 
305
  fake_predict_btn.click(
306
- fn=lambda x: fake_predict_and_correlate(
307
- spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"]
 
 
 
 
308
  ),
309
  inputs=[correlation_type],
310
- outputs=[prediction_dataframe, correlation_ranking_plot, regression_plot],
 
 
 
 
 
 
311
  )
312
 
313
- def update_regression_plot(score, use_log):
314
- return make_regression_plot(spr_data_with_scores, score, use_log)
315
-
316
- def update_correlation_plot(correlation_type):
317
  logger.info(f"Updating correlation plot for {correlation_type}")
318
  corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS)
319
  logger.info(f"Correlation data: {corr_data}")
320
- return plot_correlation_ranking(corr_data, correlation_type)
 
 
321
 
322
  correlation_column.change(
323
- fn=update_regression_plot,
324
- inputs=[correlation_column, log_scale],
325
- outputs=regression_plot,
326
  )
327
 
328
  correlation_type.change(
329
- fn=update_correlation_plot,
330
- inputs=[correlation_type],
331
- outputs=correlation_ranking_plot,
332
  )
333
-
334
  log_scale.change(
335
- fn=update_regression_plot,
336
- inputs=[correlation_column, log_scale],
337
- outputs=regression_plot,
338
  )
339
 
340
 
@@ -360,7 +425,7 @@ def __main__():
360
  )
361
  api_key = gr.Textbox(label="Folding Studio API Key", type="password")
362
  gr.Markdown("## Demo Usage")
363
- with gr.Tab("🚀 Simple Prediction"):
364
  simple_prediction(api_key)
365
  with gr.Tab("📊 Model Comparison"):
366
  model_comparison(api_key)
 
39
 
40
 
41
  MODEL_CHOICES = [
42
+ ("AlphaFold2", FoldingModel.AF2),
43
+ ("OpenFold", FoldingModel.OPENFOLD),
44
  # ("SoloSeq", FoldingModel.SOLOSEQ),
45
  ("Boltz-1", FoldingModel.BOLTZ),
46
  ("Chai-1", FoldingModel.CHAI),
 
49
 
50
  DEFAULT_SEQ = "MALWMRLLPLLALLALWGPDPAAA"
51
  MODEL_EXAMPLES = {
52
+ FoldingModel.AF2: [
53
+ ["Monomer", f">A\n{DEFAULT_SEQ}"],
54
+ ["Multimer", f">A\n{DEFAULT_SEQ}\n>B\n{DEFAULT_SEQ}"],
55
+ ],
56
+ FoldingModel.OPENFOLD: [
57
+ ["Monomer", f">A\n{DEFAULT_SEQ}"],
58
+ ["Multimer", f">A\n{DEFAULT_SEQ}\n>B\n{DEFAULT_SEQ}"],
59
+ ],
60
+ FoldingModel.SOLOSEQ: [["Monomer", f">A\n{DEFAULT_SEQ}"]],
61
  FoldingModel.BOLTZ: [
62
  ["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
63
  ["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
 
79
  Returns:
80
  gr.Textbox: Sequence input component
81
  """
82
+ with gr.Row(equal_height=True):
83
+ with gr.Column():
84
+ sequence = gr.Textbox(
85
+ label="Protein Sequence",
86
+ lines=2,
87
+ placeholder="Enter a protein sequence or upload a FASTA file",
88
+ )
89
+ dummy = gr.Textbox(label="Complex type", visible=False)
90
+
91
+ examples = gr.Examples(
92
+ examples=MODEL_EXAMPLES[FoldingModel.BOLTZ],
93
+ inputs=[dummy, sequence],
94
+ )
95
+ file_input = gr.File(
96
+ label="Upload a FASTA file",
97
+ file_types=[".fasta", ".fa"],
98
+ scale=0,
99
+ )
100
 
 
 
 
 
101
  if dropdown is not None:
102
  dropdown.change(
103
  fn=lambda x: gr.Dataset(samples=MODEL_EXAMPLES[x]),
104
  inputs=[dropdown],
105
  outputs=[examples.dataset],
106
  )
 
 
 
 
107
 
108
  def _process_file(file: gr.File | None) -> gr.Textbox:
109
  if file is None:
 
128
  """
129
  gr.Markdown(
130
  """
131
+ ## Predict a Protein Structure
132
 
133
  It will be run in the background and the results will be displayed in the output section.
134
  The output will contain the protein structure and the pLDDT plot.
 
170
  Args:
171
  api_key (str): Folding Studio API key
172
  """
173
+ gr.Markdown(
174
+ """
175
+ ## Compare Folding Models
176
 
177
+ Select multiple models to compare their predictions on your protein sequence.
178
+ You can either enter the sequence directly or upload a FASTA file.
179
+
180
+ The selected models will run in parallel and generate:
181
+ - 3D structures of your protein that you can visualize and compare
182
+ - pLDDT confidence scores plotted for each residue
183
+
184
+ """
185
+ )
186
  with gr.Row():
187
  models = gr.CheckboxGroup(
188
  label="Model",
 
201
  variant="primary",
202
  )
203
  with gr.Row():
204
+ af2_predictions = gr.CheckboxGroup(label="AlphaFold2", visible=False)
205
+ openfold_predictions = gr.CheckboxGroup(label="OpenFold", visible=False)
206
+ solo_predictions = gr.CheckboxGroup(label="SoloSeq", visible=False)
207
  chai_predictions = gr.CheckboxGroup(label="Chai", visible=False)
208
  protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False)
209
  boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False)
 
214
  metrics_plot = gr.Plot(label="pLDDT")
215
 
216
  # Store the initial predictions
217
+ prediction_outputs = gr.State()
 
218
 
219
  predict_btn.click(
220
  fn=predict_comparison,
221
  inputs=[sequence, api_key, models],
222
  outputs=[
223
+ prediction_outputs,
224
+ af2_predictions,
225
+ openfold_predictions,
226
+ solo_predictions,
227
  chai_predictions,
228
  boltz_predictions,
229
  protenix_predictions,
 
 
230
  ],
231
+ ).then(
232
+ fn=filter_predictions,
233
+ inputs=[
234
+ prediction_outputs,
235
+ af2_predictions,
236
+ openfold_predictions,
237
+ solo_predictions,
238
+ chai_predictions,
239
+ boltz_predictions,
240
+ protenix_predictions,
241
+ ],
242
+ outputs=[mol_outputs, metrics_plot],
243
  )
244
 
245
  # Handle checkbox changes
246
+ for checkbox in [
247
+ af2_predictions,
248
+ openfold_predictions,
249
+ solo_predictions,
250
+ chai_predictions,
251
+ boltz_predictions,
252
+ protenix_predictions,
253
+ ]:
254
  checkbox.change(
255
  fn=filter_predictions,
256
  inputs=[
257
+ prediction_outputs,
258
+ af2_predictions,
259
+ openfold_predictions,
260
+ solo_predictions,
261
  chai_predictions,
262
  boltz_predictions,
263
  protenix_predictions,
 
292
  "antigen_sequence": "Antigen Sequence",
293
  }
294
  spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
295
+ columns = [
296
+ "Antibody Name",
297
+ "KD (nM)",
298
+ "Antibody VH Sequence",
299
+ "Antibody VL Sequence",
300
+ "Antigen Sequence",
301
+ ]
302
+ # Display dataframe with floating point values rounded to 2 decimal places
303
+ spr_data = gr.DataFrame(
304
+ value=spr_data_with_scores[columns].round(2),
305
+ label="Experimental Antibody-Antigen Binding Affinity Data",
306
+ )
 
307
 
308
  gr.Markdown("# Prediction and correlation")
309
+
310
+ fake_predict_btn = gr.Button(
311
+ "Predict structures of all complexes",
312
+ elem_classes="gradient-button",
313
+ variant="primary",
314
+ )
315
+ prediction_dataframe = gr.Dataframe(
316
+ label="Predicted Structures Data", visible=False
317
+ )
318
+ prediction_dataframe.change(
319
+ fn=lambda x: gr.Dataframe(x, visible=True),
320
+ inputs=[prediction_dataframe],
321
+ outputs=[prediction_dataframe],
322
+ )
323
+ with gr.Row(visible=False) as correlation_row:
324
+ with gr.Column(scale=0):
 
 
 
 
325
  with gr.Row():
326
+ correlation_type = gr.Radio(
327
+ choices=["Spearman", "Pearson"],
328
+ value="Spearman",
329
+ label="Correlation Type",
330
+ interactive=True,
331
+ min_width=150,
332
  )
 
333
  with gr.Row():
334
  log_scale = gr.Checkbox(
335
+ label="Use log scale for KD",
336
+ value=False,
337
+ min_width=150,
 
 
 
 
 
 
 
338
  )
339
+ with gr.Column():
340
+ correlation_ranking_plot = gr.Plot(label="Correlation ranking")
341
+ with gr.Row(visible=False) as regression_row:
342
+ with gr.Column(scale=0):
343
+
344
+ # User can select the columns to display in the correlation plot
345
+ correlation_column = gr.Dropdown(
346
+ label="Score data to display",
347
+ choices=SCORE_COLUMNS,
348
+ multiselect=False,
349
+ value=SCORE_COLUMNS[0],
350
+ )
351
+ score_description = gr.Markdown(
352
+ get_score_description(correlation_column.value)
353
+ )
354
+ correlation_column.change(
355
+ fn=lambda x: get_score_description(x),
356
+ inputs=correlation_column,
357
+ outputs=score_description,
358
+ )
359
  with gr.Column():
360
  regression_plot = gr.Plot(label="Correlation with binding affinity")
361
 
362
  fake_predict_btn.click(
363
+ fn=lambda x: (
364
+ *fake_predict_and_correlate(
365
+ spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"]
366
+ ),
367
+ gr.Row(visible=True),
368
+ gr.Row(visible=True)
369
  ),
370
  inputs=[correlation_type],
371
+ outputs=[
372
+ prediction_dataframe,
373
+ correlation_ranking_plot,
374
+ regression_plot,
375
+ correlation_row,
376
+ regression_row,
377
+ ],
378
  )
379
 
380
+ def update_plots_with_log(correlation_type, score, use_log):
 
 
 
381
  logger.info(f"Updating correlation plot for {correlation_type}")
382
  corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS)
383
  logger.info(f"Correlation data: {corr_data}")
384
+ corr_ranking_plot = plot_correlation_ranking(corr_data, correlation_type, kd_col="KD (nM)" if not use_log else "log_kd")
385
+ regression_plot = make_regression_plot(spr_data_with_scores, score, use_log)
386
+ return regression_plot, corr_ranking_plot
387
 
388
  correlation_column.change(
389
+ fn=update_plots_with_log,
390
+ inputs=[correlation_type, correlation_column, log_scale],
391
+ outputs=[regression_plot, correlation_ranking_plot],
392
  )
393
 
394
  correlation_type.change(
395
+ fn=update_plots_with_log,
396
+ inputs=[correlation_type, correlation_column, log_scale],
397
+ outputs=[regression_plot, correlation_ranking_plot],
398
  )
 
399
  log_scale.change(
400
+ fn=update_plots_with_log,
401
+ inputs=[correlation_type, correlation_column, log_scale],
402
+ outputs=[regression_plot, correlation_ranking_plot],
403
  )
404
 
405
 
 
425
  )
426
  api_key = gr.Textbox(label="Folding Studio API Key", type="password")
427
  gr.Markdown("## Demo Usage")
428
+ with gr.Tab("🚀 Basic Folding"):
429
  simple_prediction(api_key)
430
  with gr.Tab("📊 Model Comparison"):
431
  model_comparison(api_key)
folding_studio_demo/correlate.py CHANGED
@@ -1,9 +1,10 @@
1
  import logging
2
- import pandas as pd
3
  from pathlib import Path
 
4
  import numpy as np
 
5
  import plotly.graph_objects as go
6
- from scipy.stats import spearmanr, pearsonr, linregress
7
 
8
  logger = logging.getLogger(__name__)
9
 
@@ -16,7 +17,7 @@ SCORE_COLUMN_NAMES = {
16
  "complex_pde_boltz": "Boltz Complex pDE",
17
  "complex_ipde_boltz": "Boltz Complex ipDE",
18
  "interchain_pae_monomer": "AlphaFold2 GapTrick Interchain PAE",
19
- "interface_pae_monomer": "AlphaFold2 GapTrick Interface PAE",
20
  "overall_pae_monomer": "AlphaFold2 GapTrick Overall PAE",
21
  "interface_plddt_monomer": "AlphaFold2 GapTrick Interface pLDDT",
22
  "average_plddt_monomer": "AlphaFold2 GapTrick Average pLDDT",
@@ -24,15 +25,16 @@ SCORE_COLUMN_NAMES = {
24
  "interface_ptm_monomer": "AlphaFold2 GapTrick Interface pTM",
25
  "interchain_pae_multimer": "AlphaFold2 Multimer Interchain PAE",
26
  "interface_pae_multimer": "AlphaFold2 Multimer Interface PAE",
27
- "overall_pae_multimer": "AlphaFold2 Multimer Overall PAE",
28
  "interface_plddt_multimer": "AlphaFold2 Multimer Interface pLDDT",
29
  "average_plddt_multimer": "AlphaFold2 Multimer Average pLDDT",
30
  "ptm_multimer": "AlphaFold2 Multimer pTM Score",
31
- "interface_ptm_multimer": "AlphaFold2 Multimer Interface pTM"
32
  }
33
 
34
  SCORE_COLUMNS = list(SCORE_COLUMN_NAMES.values())
35
 
 
36
  def get_score_description(score: str) -> str:
37
  descriptions = {
38
  "Boltz Confidence Score": "The Boltz model confidence score provides an overall assessment of prediction quality (0-1, higher is better).",
@@ -49,80 +51,99 @@ def get_score_description(score: str) -> str:
49
  "AlphaFold2 GapTrick Average pLDDT": "The AlphaFold2 GapTrick model average pLDDT provides the mean confidence across all residues in monomeric predictions (0-100, higher is better).",
50
  "AlphaFold2 GapTrick pTM Score": "The AlphaFold2 GapTrick model pTM score assesses overall fold accuracy in monomeric predictions (0-1, higher is better).",
51
  "AlphaFold2 GapTrick Interface pTM": "The AlphaFold2 GapTrick model interface pTM specifically evaluates accuracy of interface regions in monomeric predictions (0-1, higher is better).",
52
- "AlphaFold2 GapTrick Interchain PAE": "The AlphaFold2 GapTrick model interchain PAE estimates position errors between chains in multimeric predictions (lower is better).",
53
- "AlphaFold2 Multimer Interface PAE": "The AlphaFold2 Multimer model interface PAE estimates position errors specifically at interfaces in multimeric predictions (lower is better).",
54
  "AlphaFold2 Multimer Overall PAE": "The AlphaFold2 Multimer model overall PAE estimates position errors across the entire structure in multimeric predictions (lower is better).",
55
  "AlphaFold2 Multimer Interface pLDDT": "The AlphaFold2 Multimer model interface pLDDT measures confidence in interface region predictions for multimeric models (0-100, higher is better).",
56
  "AlphaFold2 Multimer Average pLDDT": "The AlphaFold2 Multimer model average pLDDT provides the mean confidence across all residues in multimeric predictions (0-100, higher is better).",
57
  "AlphaFold2 Multimer pTM Score": "The AlphaFold2 Multimer model pTM score assesses overall fold accuracy in multimeric predictions (0-1, higher is better).",
58
- "AlphaFold2 Multimer Interface pTM": "The AlphaFold2 Multimer model interface pTM specifically evaluates accuracy of interface regions in multimeric predictions (0-1, higher is better)."
59
  }
60
  return descriptions.get(score, "No description available for this score.")
61
 
62
- def compute_correlation_data(spr_data_with_scores: pd.DataFrame, score_cols: list[str]) -> pd.DataFrame:
 
 
 
63
  corr_data_file = Path("corr_data.csv")
64
  if corr_data_file.exists():
65
  logger.info(f"Loading correlation data from {corr_data_file}")
66
  return pd.read_csv(corr_data_file)
67
-
68
  corr_data = []
69
  spr_data_with_scores["log_kd"] = np.log10(spr_data_with_scores["KD (nM)"])
70
  kd_col = "KD (nM)"
71
  corr_funcs = {}
72
  corr_funcs["Spearman"] = spearmanr
73
  corr_funcs["Pearson"] = pearsonr
74
- corr_funcs[""] = linregress
75
- for correlation_type, corr_func in corr_funcs.items():
76
- for score_col in score_cols:
77
- logger.info(f"Computing {correlation_type} correlation between {score_col} and KD (nM)")
78
- res = corr_func(spr_data_with_scores[kd_col], spr_data_with_scores[score_col])
79
- logger.info(f"Correlation function: {corr_func}")
80
- correlation_value = res.rvalue**2 if correlation_type == "R²" else res.statistic
81
- corr_data.append({
82
- "correlation_type": correlation_type,
83
- "score": score_col,
84
- "correlation": correlation_value,
85
- "p-value": res.pvalue
86
- })
87
- logger.info(f"Correlation {correlation_type} between {score_col} and KD (nM): {correlation_value}")
 
 
 
 
 
 
88
 
89
  corr_data = pd.DataFrame(corr_data)
90
  # Find the lines in corr_data with NaN values and remove them
91
  corr_data = corr_data[corr_data["correlation"].notna()]
92
  # Sort correlation data by correlation value
93
- corr_data = corr_data.sort_values('correlation', ascending=True)
94
-
95
  corr_data.to_csv("corr_data.csv", index=False)
96
-
97
  return corr_data
98
 
99
- def plot_correlation_ranking(corr_data: pd.DataFrame, correlation_type: str) -> go.Figure:
 
 
 
100
  # Create bar plot of correlations
101
- data = corr_data[corr_data["correlation_type"] == correlation_type]
102
- corr_ranking_plot = go.Figure(data=[
103
- go.Bar(
104
- x=data["correlation"],
105
- y=data["score"],
106
- name=correlation_type,
107
- text=data["correlation"],
108
- orientation='h',
109
- hovertemplate="<i>Score:</i> %{y}<br><i>Correlation:</i> %{x:.3f}<br>"
110
- )
111
- ])
 
 
 
 
 
112
  corr_ranking_plot.update_layout(
113
  title="Correlation with Binding Affinity",
114
  yaxis_title="Score",
115
  xaxis_title=correlation_type,
116
  template="simple_white",
117
- showlegend=False
118
  )
119
  return corr_ranking_plot
120
 
121
- def fake_predict_and_correlate(spr_data_with_scores: pd.DataFrame, score_cols: list[str], main_cols: list[str]) -> tuple[pd.DataFrame, go.Figure]:
 
 
 
122
  """Fake predict structures of all complexes and correlate the results."""
123
-
124
  corr_data = compute_correlation_data(spr_data_with_scores, score_cols)
125
- corr_ranking_plot = plot_correlation_ranking(corr_data, "Spearman")
126
 
127
  cols_to_show = main_cols[:]
128
  cols_to_show.extend(score_cols)
@@ -131,17 +152,20 @@ def fake_predict_and_correlate(spr_data_with_scores: pd.DataFrame, score_cols: l
131
 
132
  return spr_data_with_scores[cols_to_show].round(2), corr_ranking_plot, corr_plot
133
 
134
- def make_regression_plot(spr_data_with_scores: pd.DataFrame, score: str, use_log: bool) -> go.Figure:
 
 
 
135
  """Select the regression plot to display."""
136
  # corr_plot is a scatter plot of the regression between the binding affinity and each of the scores
137
- scatter = go.Scatter(
138
- x=spr_data_with_scores["KD (nM)"],
139
- y=spr_data_with_scores[score],
140
- name=f"Samples",
141
- mode='markers', # Only show markers/dots, no lines
142
- hovertemplate="<i>Score:</i> %{y}<br><i>KD:</i> %{x:.2f}<br>",
143
- marker=dict(color='#1f77b4') # Set color to match default first color
144
- )
145
  corr_plot = go.Figure(data=scatter)
146
  corr_plot.update_layout(
147
  xaxis_title="KD (nM)",
@@ -154,7 +178,7 @@ def make_regression_plot(spr_data_with_scores: pd.DataFrame, score: str, use_log
154
  xanchor="right",
155
  x=1,
156
  ),
157
- xaxis_type="log" if use_log else "linear" # Set x-axis to logarithmic scale
158
  )
159
  # compute the regression line
160
  if use_log:
@@ -162,23 +186,25 @@ def make_regression_plot(spr_data_with_scores: pd.DataFrame, score: str, use_log
162
  x_vals = np.log10(spr_data_with_scores["KD (nM)"])
163
  else:
164
  x_vals = spr_data_with_scores["KD (nM)"]
165
-
166
  # Fit line to data
167
  corr_line = np.polyfit(x_vals, spr_data_with_scores[score], 1)
168
-
169
  # Generate x points for line
170
  corr_line_x = np.linspace(min(x_vals), max(x_vals), 100)
171
  corr_line_y = corr_line[0] * corr_line_x + corr_line[1]
172
-
173
  # Convert back from log space if needed
174
  if use_log:
175
  corr_line_x = 10**corr_line_x
176
  # add the regression line to the plot
177
- corr_plot.add_trace(go.Scatter(
178
- x=corr_line_x,
179
- y=corr_line_y,
180
- mode='lines',
181
- name=f"Regression line",
182
- line=dict(color='#1f77b4') # Set same color as scatter points
183
- ))
184
- return corr_plot
 
 
 
1
  import logging
 
2
  from pathlib import Path
3
+
4
  import numpy as np
5
+ import pandas as pd
6
  import plotly.graph_objects as go
7
+ from scipy.stats import linregress, pearsonr, spearmanr
8
 
9
  logger = logging.getLogger(__name__)
10
 
 
17
  "complex_pde_boltz": "Boltz Complex pDE",
18
  "complex_ipde_boltz": "Boltz Complex ipDE",
19
  "interchain_pae_monomer": "AlphaFold2 GapTrick Interchain PAE",
20
+ "interface_pae_monomer": "AlphaFold2 GapTrick Interface PAE",
21
  "overall_pae_monomer": "AlphaFold2 GapTrick Overall PAE",
22
  "interface_plddt_monomer": "AlphaFold2 GapTrick Interface pLDDT",
23
  "average_plddt_monomer": "AlphaFold2 GapTrick Average pLDDT",
 
25
  "interface_ptm_monomer": "AlphaFold2 GapTrick Interface pTM",
26
  "interchain_pae_multimer": "AlphaFold2 Multimer Interchain PAE",
27
  "interface_pae_multimer": "AlphaFold2 Multimer Interface PAE",
28
+ "overall_pae_multimer": "AlphaFold2 Multimer Overall PAE",
29
  "interface_plddt_multimer": "AlphaFold2 Multimer Interface pLDDT",
30
  "average_plddt_multimer": "AlphaFold2 Multimer Average pLDDT",
31
  "ptm_multimer": "AlphaFold2 Multimer pTM Score",
32
+ "interface_ptm_multimer": "AlphaFold2 Multimer Interface pTM",
33
  }
34
 
35
  SCORE_COLUMNS = list(SCORE_COLUMN_NAMES.values())
36
 
37
+
38
  def get_score_description(score: str) -> str:
39
  descriptions = {
40
  "Boltz Confidence Score": "The Boltz model confidence score provides an overall assessment of prediction quality (0-1, higher is better).",
 
51
  "AlphaFold2 GapTrick Average pLDDT": "The AlphaFold2 GapTrick model average pLDDT provides the mean confidence across all residues in monomeric predictions (0-100, higher is better).",
52
  "AlphaFold2 GapTrick pTM Score": "The AlphaFold2 GapTrick model pTM score assesses overall fold accuracy in monomeric predictions (0-1, higher is better).",
53
  "AlphaFold2 GapTrick Interface pTM": "The AlphaFold2 GapTrick model interface pTM specifically evaluates accuracy of interface regions in monomeric predictions (0-1, higher is better).",
54
+ "AlphaFold2 Multimer Interface PAE": "The AlphaFold2 Multimer model interface PAE estimates position errors specifically at interfaces in multimeric predictions (lower is better).",
 
55
  "AlphaFold2 Multimer Overall PAE": "The AlphaFold2 Multimer model overall PAE estimates position errors across the entire structure in multimeric predictions (lower is better).",
56
  "AlphaFold2 Multimer Interface pLDDT": "The AlphaFold2 Multimer model interface pLDDT measures confidence in interface region predictions for multimeric models (0-100, higher is better).",
57
  "AlphaFold2 Multimer Average pLDDT": "The AlphaFold2 Multimer model average pLDDT provides the mean confidence across all residues in multimeric predictions (0-100, higher is better).",
58
  "AlphaFold2 Multimer pTM Score": "The AlphaFold2 Multimer model pTM score assesses overall fold accuracy in multimeric predictions (0-1, higher is better).",
59
+ "AlphaFold2 Multimer Interface pTM": "The AlphaFold2 Multimer model interface pTM specifically evaluates accuracy of interface regions in multimeric predictions (0-1, higher is better).",
60
  }
61
  return descriptions.get(score, "No description available for this score.")
62
 
63
+
64
+ def compute_correlation_data(
65
+ spr_data_with_scores: pd.DataFrame, score_cols: list[str]
66
+ ) -> pd.DataFrame:
67
  corr_data_file = Path("corr_data.csv")
68
  if corr_data_file.exists():
69
  logger.info(f"Loading correlation data from {corr_data_file}")
70
  return pd.read_csv(corr_data_file)
71
+
72
  corr_data = []
73
  spr_data_with_scores["log_kd"] = np.log10(spr_data_with_scores["KD (nM)"])
74
  kd_col = "KD (nM)"
75
  corr_funcs = {}
76
  corr_funcs["Spearman"] = spearmanr
77
  corr_funcs["Pearson"] = pearsonr
78
+ for kd_col in ["KD (nM)", "log_kd"]:
79
+ for correlation_type, corr_func in corr_funcs.items():
80
+ for score_col in score_cols:
81
+ logger.info(
82
+ f"Computing {correlation_type} correlation between {score_col} and {kd_col}"
83
+ )
84
+ res = corr_func(
85
+ spr_data_with_scores[kd_col], spr_data_with_scores[score_col]
86
+ )
87
+ logger.info(f"Correlation function: {corr_func}")
88
+ correlation_value = res.statistic
89
+ corr_data.append(
90
+ {
91
+ "correlation_type": correlation_type,
92
+ "kd_col": kd_col,
93
+ "score": score_col,
94
+ "correlation": correlation_value,
95
+ "p-value": res.pvalue,
96
+ }
97
+ )
98
 
99
  corr_data = pd.DataFrame(corr_data)
100
  # Find the lines in corr_data with NaN values and remove them
101
  corr_data = corr_data[corr_data["correlation"].notna()]
102
  # Sort correlation data by correlation value
103
+ corr_data = corr_data.sort_values("correlation", ascending=True)
104
+
105
  corr_data.to_csv("corr_data.csv", index=False)
106
+
107
  return corr_data
108
 
109
+
110
+ def plot_correlation_ranking(
111
+ corr_data: pd.DataFrame, correlation_type: str, kd_col: str
112
+ ) -> go.Figure:
113
  # Create bar plot of correlations
114
+ data = corr_data[
115
+ (corr_data["correlation_type"] == correlation_type)
116
+ & (corr_data["kd_col"] == kd_col)
117
+ ]
118
+ corr_ranking_plot = go.Figure(
119
+ data=[
120
+ go.Bar(
121
+ x=data["correlation"],
122
+ y=data["score"],
123
+ name=correlation_type,
124
+ text=data["correlation"],
125
+ orientation="h",
126
+ hovertemplate="<i>Score:</i> %{y}<br><i>Correlation:</i> %{x:.3f}<br>",
127
+ )
128
+ ]
129
+ )
130
  corr_ranking_plot.update_layout(
131
  title="Correlation with Binding Affinity",
132
  yaxis_title="Score",
133
  xaxis_title=correlation_type,
134
  template="simple_white",
135
+ showlegend=False,
136
  )
137
  return corr_ranking_plot
138
 
139
+
140
+ def fake_predict_and_correlate(
141
+ spr_data_with_scores: pd.DataFrame, score_cols: list[str], main_cols: list[str]
142
+ ) -> tuple[pd.DataFrame, go.Figure]:
143
  """Fake predict structures of all complexes and correlate the results."""
144
+
145
  corr_data = compute_correlation_data(spr_data_with_scores, score_cols)
146
+ corr_ranking_plot = plot_correlation_ranking(corr_data, "Spearman", kd_col="KD (nM)")
147
 
148
  cols_to_show = main_cols[:]
149
  cols_to_show.extend(score_cols)
 
152
 
153
  return spr_data_with_scores[cols_to_show].round(2), corr_ranking_plot, corr_plot
154
 
155
+
156
+ def make_regression_plot(
157
+ spr_data_with_scores: pd.DataFrame, score: str, use_log: bool
158
+ ) -> go.Figure:
159
  """Select the regression plot to display."""
160
  # corr_plot is a scatter plot of the regression between the binding affinity and each of the scores
161
+ scatter = go.Scatter(
162
+ x=spr_data_with_scores["KD (nM)"],
163
+ y=spr_data_with_scores[score],
164
+ name=f"Samples",
165
+ mode="markers", # Only show markers/dots, no lines
166
+ hovertemplate="<i>Score:</i> %{y}<br><i>KD:</i> %{x:.2f}<br>",
167
+ marker=dict(color="#1f77b4"), # Set color to match default first color
168
+ )
169
  corr_plot = go.Figure(data=scatter)
170
  corr_plot.update_layout(
171
  xaxis_title="KD (nM)",
 
178
  xanchor="right",
179
  x=1,
180
  ),
181
+ xaxis_type="log" if use_log else "linear", # Set x-axis to logarithmic scale
182
  )
183
  # compute the regression line
184
  if use_log:
 
186
  x_vals = np.log10(spr_data_with_scores["KD (nM)"])
187
  else:
188
  x_vals = spr_data_with_scores["KD (nM)"]
189
+
190
  # Fit line to data
191
  corr_line = np.polyfit(x_vals, spr_data_with_scores[score], 1)
192
+
193
  # Generate x points for line
194
  corr_line_x = np.linspace(min(x_vals), max(x_vals), 100)
195
  corr_line_y = corr_line[0] * corr_line_x + corr_line[1]
196
+
197
  # Convert back from log space if needed
198
  if use_log:
199
  corr_line_x = 10**corr_line_x
200
  # add the regression line to the plot
201
+ corr_plot.add_trace(
202
+ go.Scatter(
203
+ x=corr_line_x,
204
+ y=corr_line_y,
205
+ mode="lines",
206
+ name=f"Regression line",
207
+ line=dict(color="#1f77b4"), # Set same color as scatter points
208
+ )
209
+ )
210
+ return corr_plot
folding_studio_demo/model_fasta_validators.py CHANGED
@@ -248,15 +248,15 @@ class ChaiFastaValidator(BaseFastaValidator):
248
  )
249
  seen_names.add(name)
250
  # validate sequence format
251
- # sequence = str(record.seq).strip()
252
- # if (
253
- # entity_type in {EntityType.PEPTIDE, EntityType.PROTEIN}
254
- # and not get_entity_type(sequence) == entity_type
255
- # ):
256
- # return (
257
- # False,
258
- # f"CHAI Validation Error: Sequence type mismatch. Expected '{entity_type}' but found '{get_entity_type(sequence)}'",
259
- # )
260
 
261
  return True, None
262
 
 
248
  )
249
  seen_names.add(name)
250
  # validate sequence format
251
+ sequence = str(record.seq).strip()
252
+ if (
253
+ entity_type in {EntityType.PEPTIDE, EntityType.PROTEIN}
254
+ and not get_entity_type(sequence) == entity_type
255
+ ):
256
+ return (
257
+ False,
258
+ f"CHAI Validation Error: Sequence type mismatch. Expected '{entity_type}' but found '{get_entity_type(sequence)}'",
259
+ )
260
 
261
  return True, None
262
 
folding_studio_demo/models.py CHANGED
@@ -1,17 +1,26 @@
1
  """Models for the Folding Studio API."""
2
 
 
3
  import logging
4
  import os
 
 
 
5
  from pathlib import Path
6
  from typing import Any
7
 
8
  import gradio as gr
9
  import numpy as np
 
10
  from folding_studio.client import Client
 
 
11
  from folding_studio.query import Query
12
  from folding_studio.query.boltz import BoltzQuery
13
  from folding_studio.query.chai import ChaiQuery
14
  from folding_studio.query.protenix import ProtenixQuery
 
 
15
 
16
  from folding_studio_demo.model_fasta_validators import (
17
  BaseFastaValidator,
@@ -20,15 +29,29 @@ from folding_studio_demo.model_fasta_validators import (
20
  ProtenixFastaValidator,
21
  )
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  logger = logging.getLogger(__name__)
24
 
25
 
26
  class AF3Model:
27
- def __init__(
28
- self, api_key: str, model_name: str, query: Query, validator: BaseFastaValidator
29
- ):
30
  self.api_key = api_key
31
- self.model_name = model_name
32
  self.query = query
33
  self.validator = validator
34
 
@@ -116,8 +139,10 @@ class AF3Model:
116
 
117
 
118
  class ChaiModel(AF3Model):
 
 
119
  def __init__(self, api_key: str):
120
- super().__init__(api_key, "Chai", ChaiQuery, ChaiFastaValidator())
121
 
122
  def call(
123
  self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
@@ -158,8 +183,10 @@ class ChaiModel(AF3Model):
158
 
159
 
160
  class ProtenixModel(AF3Model):
 
 
161
  def __init__(self, api_key: str):
162
- super().__init__(api_key, "Protenix", ProtenixQuery, ProtenixFastaValidator())
163
 
164
  def call(
165
  self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
@@ -179,8 +206,10 @@ class ProtenixModel(AF3Model):
179
 
180
 
181
  class BoltzModel(AF3Model):
 
 
182
  def __init__(self, api_key: str):
183
- super().__init__(api_key, "Boltz", BoltzQuery, BoltzFastaValidator())
184
 
185
  def call(
186
  self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
@@ -205,3 +234,113 @@ class BoltzModel(AF3Model):
205
  }
206
  for cif_path in prediction_paths
207
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Models for the Folding Studio API."""
2
 
3
+ import json
4
  import logging
5
  import os
6
+ import sys
7
+ import time
8
+ from io import StringIO
9
  from pathlib import Path
10
  from typing import Any
11
 
12
  import gradio as gr
13
  import numpy as np
14
+ from folding_studio import single_job_prediction
15
  from folding_studio.client import Client
16
+ from folding_studio.commands.experiment import results as get_results
17
+ from folding_studio.commands.experiment import status as get_status
18
  from folding_studio.query import Query
19
  from folding_studio.query.boltz import BoltzQuery
20
  from folding_studio.query.chai import ChaiQuery
21
  from folding_studio.query.protenix import ProtenixQuery
22
+ from folding_studio_data_models import AF2Parameters, OpenFoldParameters
23
+ from folding_studio_data_models.parameters.base import BaseFoldingParameters
24
 
25
  from folding_studio_demo.model_fasta_validators import (
26
  BaseFastaValidator,
 
29
  ProtenixFastaValidator,
30
  )
31
 
32
+
33
+ class Capturing(list):
34
+ """Capture stdout output."""
35
+
36
+ def __enter__(self):
37
+ self._stdout = sys.stdout
38
+ sys.stdout = self._stringio = StringIO()
39
+ return self
40
+
41
+ def __exit__(self, *args):
42
+ self.extend(self._stringio.getvalue().splitlines())
43
+ del self._stringio # free up some memory
44
+ sys.stdout = self._stdout
45
+
46
+
47
  logger = logging.getLogger(__name__)
48
 
49
 
50
  class AF3Model:
51
+ model_name = None
52
+
53
+ def __init__(self, api_key: str, query: Query, validator: BaseFastaValidator):
54
  self.api_key = api_key
 
55
  self.query = query
56
  self.validator = validator
57
 
 
139
 
140
 
141
  class ChaiModel(AF3Model):
142
+ model_name = "Chai"
143
+
144
  def __init__(self, api_key: str):
145
+ super().__init__(api_key, ChaiQuery, ChaiFastaValidator())
146
 
147
  def call(
148
  self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
 
183
 
184
 
185
  class ProtenixModel(AF3Model):
186
+ model_name = "Protenix"
187
+
188
  def __init__(self, api_key: str):
189
+ super().__init__(api_key, ProtenixQuery, ProtenixFastaValidator())
190
 
191
  def call(
192
  self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
 
206
 
207
 
208
  class BoltzModel(AF3Model):
209
+ model_name = "Boltz"
210
+
211
  def __init__(self, api_key: str):
212
+ super().__init__(api_key, BoltzQuery, BoltzFastaValidator())
213
 
214
  def call(
215
  self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
 
234
  }
235
  for cif_path in prediction_paths
236
  }
237
+
238
+
239
+ class OldModel:
240
+ model_name = None
241
+
242
+ def __init__(self, api_key: str):
243
+ self.api_key = api_key
244
+
245
+ def call(
246
+ self,
247
+ seq_file: Path | str,
248
+ output_dir: Path,
249
+ parameters: BaseFoldingParameters,
250
+ *args,
251
+ **kwargs,
252
+ ) -> None:
253
+ """Predict protein structure from amino acid sequence using AF2 model.
254
+
255
+ Args:
256
+ seq_file (Path | str): Path to FASTA file containing amino acid sequence
257
+ output_dir (Path): Path to output directory
258
+ """
259
+ output = single_job_prediction(
260
+ fasta_file=seq_file,
261
+ parameters=parameters,
262
+ )
263
+ experiment_id = output["message"]["experiment_id"]
264
+ done = False
265
+ while not done:
266
+ with Capturing() as output:
267
+ get_status(experiment_id)
268
+ status = output[0]
269
+ logger.info(f"Experiment {experiment_id} status: {status}")
270
+ if status == "Done":
271
+ done = True
272
+ logger.info("Downloading results")
273
+ get_results(
274
+ experiment_id,
275
+ force=True,
276
+ unzip=True,
277
+ output=output_dir / "results.zip",
278
+ )
279
+ logger.info("Results downloaded to %s", output_dir)
280
+ else:
281
+ logger.info("Sleeping for 10 seconds")
282
+ time.sleep(10)
283
+
284
+ def format_fasta(self, seq_file: Path | str) -> None:
285
+ """Format sequence to FASTA format.
286
+
287
+ Args:
288
+ seq_file (Path | str): Path to FASTA file
289
+ """
290
+ return
291
+
292
+ def predictions(self, output_dir: Path) -> dict[int, dict[str, Any]]:
293
+ """Get the path to the prediction.
294
+
295
+ Args:
296
+ output_dir (Path): Path to output directory
297
+
298
+ Returns:
299
+ dict[int, dict[str, Any]]: Dictionary mapping model indices to their prediction paths and metrics
300
+ """
301
+ prediction_paths = list(
302
+ (output_dir / "results").rglob("relaxed_model_[0-9]_ptm_pred_0.pdb")
303
+ )
304
+ metrics_path = output_dir / "results" / "metrics_per_model.json"
305
+ if not metrics_path.exists():
306
+ return {}
307
+ with open(metrics_path, "r") as f:
308
+ metrics = json.load(f)
309
+ output = {
310
+ int(pred_path.stem.split("_")[2]): {
311
+ "prediction_path": pred_path,
312
+ "metrics": metrics[f"model_{int(pred_path.stem.split('_')[2])}_ptm"],
313
+ }
314
+ for pred_path in prediction_paths
315
+ }
316
+ return output
317
+
318
+ def has_prediction(self, output_dir: Path) -> bool:
319
+ """Check if prediction exists in output directory."""
320
+ return len(self.predictions(output_dir)) > 0
321
+
322
+ def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]:
323
+ """Check if the file description is correct.
324
+
325
+ Args:
326
+ seq_file (Path | str): Path to FASTA file
327
+
328
+ Returns:
329
+ tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not
330
+ """
331
+
332
+ return True, None
333
+
334
+
335
+ class AF2Model(OldModel):
336
+ model_name = "AlphaFold2"
337
+
338
+ def call(self, seq_file: Path | str, output_dir: Path, *args, **kwargs) -> None:
339
+ super().call(seq_file, output_dir, AF2Parameters(), *args, **kwargs)
340
+
341
+
342
+ class OpenFoldModel(OldModel):
343
+ model_name = "OpenFold"
344
+
345
+ def call(self, seq_file: Path | str, output_dir: Path, *args, **kwargs) -> None:
346
+ super().call(seq_file, output_dir, OpenFoldParameters(), *args, **kwargs)
folding_studio_demo/predict.py CHANGED
@@ -1,9 +1,11 @@
1
  """Predict protein structure using Folding Studio."""
2
 
 
3
  import hashlib
4
  import logging
5
  from io import StringIO
6
  from pathlib import Path
 
7
 
8
  import gradio as gr
9
  import numpy as np
@@ -12,7 +14,13 @@ from Bio import SeqIO
12
  from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer
13
  from folding_studio_data_models import FoldingModel
14
 
15
- from folding_studio_demo.models import BoltzModel, ChaiModel, ProtenixModel
 
 
 
 
 
 
16
 
17
  logger = logging.getLogger(__name__)
18
 
@@ -85,20 +93,22 @@ def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
85
  def create_plddt_figure(
86
  plddt_vals: list[list[float]],
87
  model_name: str,
 
88
  residue_codes: list[list[str]] = None,
89
  ) -> go.Figure:
90
  """Create a plot of metrics."""
91
  plddt_traces = []
92
- for i, plddt_val in enumerate(plddt_vals):
 
93
  # Create hover text with residue codes if available
94
  if residue_codes and i < len(residue_codes):
95
  hover_text = [
96
- f"<i>pLDDT</i>: {plddt:.2f}<br><i>Residue:</i> {code} {idx}"
97
  for idx, (plddt, code) in enumerate(zip(plddt_val, residue_codes[i]))
98
  ]
99
  else:
100
  hover_text = [
101
- f"<i>pLDDT</i>: {plddt:.2f}<br><i>Residue index:</i> {idx}"
102
  for idx, plddt in enumerate(plddt_val)
103
  ]
104
 
@@ -108,7 +118,7 @@ def create_plddt_figure(
108
  y=plddt_val,
109
  hovertemplate="%{text}<extra></extra>",
110
  text=hover_text,
111
- name=f"{model_name} {i}",
112
  visible=True,
113
  )
114
  )
@@ -150,8 +160,19 @@ def _write_fasta_file(
150
  return seq_id, seq_file
151
 
152
 
153
- def extract_plddt_from_cif(cif_path):
154
- structure = MMCIFParser().get_structure("structure", cif_path)
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  # Lists to store pLDDT values and residue codes
157
  plddt_values = []
@@ -206,6 +227,10 @@ def predict(
206
  model = ChaiModel(api_key)
207
  elif model_type == FoldingModel.PROTENIX:
208
  model = ProtenixModel(api_key)
 
 
 
 
209
  else:
210
  raise ValueError(f"Model {model_type} not supported")
211
 
@@ -235,22 +260,36 @@ def predict(
235
  progress(
236
  0.4 + (0.4 * i / total_predictions), desc=f"Converting model {model_idx}..."
237
  )
238
- cif_path = prediction["prediction_path"]
239
- logger.info(f"CIF file: {cif_path}")
240
-
241
- converted_pdb_path = str(
242
- output_dir / f"{model.model_name}_prediction_{model_idx}.pdb"
243
- )
244
- convert_cif_to_pdb(str(cif_path), str(converted_pdb_path))
245
- plddt_vals, residue_codes = extract_plddt_from_cif(cif_path)
246
- pdb_paths.append(converted_pdb_path)
 
 
247
  model_plddt_vals.append(plddt_vals)
248
  model_residue_codes.append(residue_codes)
249
 
250
  progress(0.8, desc="Generating plots...")
 
 
 
 
 
 
 
 
 
 
 
251
  plddt_fig = create_plddt_figure(
252
  plddt_vals=model_plddt_vals,
253
  model_name=model.model_name,
 
254
  residue_codes=model_residue_codes,
255
  )
256
 
@@ -258,11 +297,13 @@ def predict(
258
  return pdb_paths, plddt_fig
259
 
260
 
261
- def align_structures(pdb_paths: list[str]) -> list[str]:
 
 
262
  """Align multiple PDB structures to the first structure.
263
 
264
  Args:
265
- pdb_paths (list[str]): List of paths to PDB files to align
266
 
267
  Returns:
268
  list[str]: List of paths to aligned PDB files
@@ -271,39 +312,47 @@ def align_structures(pdb_paths: list[str]) -> list[str]:
271
  parser = PDBParser()
272
  io = PDBIO()
273
 
274
- # Parse the reference structure (first one)
275
- ref_structure = parser.get_structure("reference", pdb_paths[0])
 
 
 
 
 
276
  ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"]
277
 
278
- aligned_paths = [pdb_paths[0]] # First structure is already aligned
 
 
 
 
 
 
279
 
280
- # Align each subsequent structure to the reference
281
- for i, pdb_path in enumerate(pdb_paths[1:], start=1):
282
- # Parse the structure to align
283
- structure = parser.get_structure(f"model_{i}", pdb_path)
284
- atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"]
285
 
286
- # Create superimposer
287
- sup = Superimposer()
288
 
289
- # Set the reference and moving atoms
290
- sup.set_atoms(ref_atoms, atoms)
291
 
292
- # Apply the transformation to all atoms in the structure
293
- sup.apply(structure.get_atoms())
 
 
294
 
295
- # Save the aligned structure
296
- aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}")
297
- io.set_structure(structure)
298
- io.save(aligned_path)
299
- aligned_paths.append(aligned_path)
300
 
301
- return aligned_paths
302
 
303
 
304
  def filter_predictions(
305
- aligned_paths: list[str],
306
- plddt_fig: go.Figure,
 
 
307
  chai_selected: list[int],
308
  boltz_selected: list[int],
309
  protenix_selected: list[int],
@@ -316,7 +365,7 @@ def filter_predictions(
316
  chai_selected (list[int]): Selected Chai model indices
317
  boltz_selected (list[int]): Selected Boltz model indices
318
  protenix_selected (list[int]): Selected Protenix model indices
319
- model_predictions (dict[FoldingModel, list[int]]): Dictionary mapping models to their prediction indices
320
 
321
  Returns:
322
  tuple[list[str], go.Figure]: Filtered PDB paths and updated pLDDT plot
@@ -325,26 +374,30 @@ def filter_predictions(
325
  filtered_fig = go.Figure()
326
 
327
  # Keep track of which traces to show
328
- visible_paths = []
329
 
330
  # Helper function to check if a trace should be visible
331
- def should_show_trace(trace_name: str) -> bool:
332
- model_name = trace_name.split()[0]
333
- model_idx = int(trace_name.split()[1])
334
-
335
- if model_name == "Chai" and model_idx in chai_selected:
 
 
 
336
  return True
337
- if model_name == "Boltz" and model_idx in boltz_selected:
338
  return True
339
- if model_name == "Protenix" and model_idx in protenix_selected:
340
  return True
341
  return False
342
 
343
  # Filter traces and paths
344
- for i, trace in enumerate(plddt_fig.data):
345
- if should_show_trace(trace.name):
346
- filtered_fig.add_trace(trace)
347
- visible_paths.append(aligned_paths[i])
 
348
 
349
  # Update layout
350
  filtered_fig.update_layout(
@@ -355,21 +408,58 @@ def filter_predictions(
355
  template="simple_white",
356
  legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
357
  )
 
358
 
359
- return visible_paths, filtered_fig
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360
 
361
 
362
  def predict_comparison(
363
  sequence: str, api_key: str, model_types: list[FoldingModel], progress=gr.Progress()
364
  ) -> tuple[
365
- list[str],
366
- go.Figure,
 
 
367
  gr.CheckboxGroup,
368
  gr.CheckboxGroup,
369
  gr.CheckboxGroup,
370
- list[str],
371
- go.Figure,
372
- dict,
373
  ]:
374
  """Predict protein structure from amino acid sequence using multiple models.
375
 
@@ -381,68 +471,94 @@ def predict_comparison(
381
 
382
  Returns:
383
  tuple containing:
384
- - list[str]: Aligned PDB paths
385
- - go.Figure: pLDDT plot
 
 
386
  - gr.CheckboxGroup: Chai predictions checkbox group
387
  - gr.CheckboxGroup: Boltz predictions checkbox group
388
  - gr.CheckboxGroup: Protenix predictions checkbox group
389
- - list[str]: Original PDB paths
390
- - go.Figure: Original pLDDT plot
391
- - dict: Model predictions mapping
392
  """
393
  if not api_key:
394
  raise gr.Error("Missing API key, please enter a valid API key")
395
 
396
- # Set up unique output directory based on sequence hash
397
- pdb_paths = []
398
- plddt_traces = []
399
- total_models = len(model_types)
400
  model_predictions = {}
401
 
402
- for i, model_type in enumerate(model_types):
403
- progress(i / total_models, desc=f"Running {model_type} prediction...")
404
- model_pdb_paths, model_plddt_traces = predict(
405
- sequence, api_key, model_type, format_fasta=True
406
- )
407
- pdb_paths += model_pdb_paths
408
- plddt_traces += model_plddt_traces.data
409
- model_predictions[model_type] = [int(Path(p).stem[-1]) for p in model_pdb_paths]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
 
411
  progress(0.9, desc="Aligning structures...")
412
- aligned_paths = align_structures(pdb_paths)
413
- plddt_fig = go.Figure(data=plddt_traces)
414
- plddt_fig.update_layout(
415
- title="pLDDT",
416
- xaxis_title="Residue index",
417
- yaxis_title="pLDDT",
418
- height=500,
419
- template="simple_white",
420
- legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
421
- )
422
 
423
  progress(1.0, desc="Done!")
424
 
425
  # Create checkbox groups for each model type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426
  chai_predictions = gr.CheckboxGroup(
427
  visible=model_predictions.get(FoldingModel.CHAI) is not None,
428
- choices=model_predictions.get(FoldingModel.CHAI, []),
429
- value=model_predictions.get(FoldingModel.CHAI, []),
430
  )
431
  boltz_predictions = gr.CheckboxGroup(
432
  visible=model_predictions.get(FoldingModel.BOLTZ) is not None,
433
- choices=model_predictions.get(FoldingModel.BOLTZ, []),
434
- value=model_predictions.get(FoldingModel.BOLTZ, []),
435
  )
436
  protenix_predictions = gr.CheckboxGroup(
437
  visible=model_predictions.get(FoldingModel.PROTENIX) is not None,
438
- choices=model_predictions.get(FoldingModel.PROTENIX, []),
439
- value=model_predictions.get(FoldingModel.PROTENIX, []),
440
  )
441
 
442
  return (
 
 
 
 
443
  chai_predictions,
444
  boltz_predictions,
445
  protenix_predictions,
446
- aligned_paths,
447
- plddt_fig,
448
  )
 
1
  """Predict protein structure using Folding Studio."""
2
 
3
+ import concurrent.futures
4
  import hashlib
5
  import logging
6
  from io import StringIO
7
  from pathlib import Path
8
+ from typing import Any
9
 
10
  import gradio as gr
11
  import numpy as np
 
14
  from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer
15
  from folding_studio_data_models import FoldingModel
16
 
17
+ from folding_studio_demo.models import (
18
+ AF2Model,
19
+ BoltzModel,
20
+ ChaiModel,
21
+ OpenFoldModel,
22
+ ProtenixModel,
23
+ )
24
 
25
  logger = logging.getLogger(__name__)
26
 
 
93
  def create_plddt_figure(
94
  plddt_vals: list[list[float]],
95
  model_name: str,
96
+ indexes: list[int],
97
  residue_codes: list[list[str]] = None,
98
  ) -> go.Figure:
99
  """Create a plot of metrics."""
100
  plddt_traces = []
101
+
102
+ for i, (plddt_val, index) in enumerate(zip(plddt_vals, indexes)):
103
  # Create hover text with residue codes if available
104
  if residue_codes and i < len(residue_codes):
105
  hover_text = [
106
+ f"<i>{model_name} {index}</i><br><i>pLDDT</i>: {plddt:.2f}<br><i>Residue:</i> {code} {idx}"
107
  for idx, (plddt, code) in enumerate(zip(plddt_val, residue_codes[i]))
108
  ]
109
  else:
110
  hover_text = [
111
+ f"<i>{model_name} {index}</i><br><i>pLDDT</i>: {plddt:.2f}<br><i>Residue index:</i> {idx}"
112
  for idx, plddt in enumerate(plddt_val)
113
  ]
114
 
 
118
  y=plddt_val,
119
  hovertemplate="%{text}<extra></extra>",
120
  text=hover_text,
121
+ name=f"{model_name} {index}",
122
  visible=True,
123
  )
124
  )
 
160
  return seq_id, seq_file
161
 
162
 
163
+ def extract_plddt_from_structure(structure_path: str) -> tuple[list[float], list[str]]:
164
+ """Extract pLDDT values and residue codes from a structure file.
165
+
166
+ Args:
167
+ structure_path (Path): Path to structure file
168
+
169
+ Returns:
170
+ tuple[list[float], list[str]]: Tuple containing lists of pLDDT values and residue codes
171
+ """
172
+ if Path(structure_path).suffix == ".cif":
173
+ structure = MMCIFParser().get_structure("structure", structure_path)
174
+ else:
175
+ structure = PDBParser().get_structure("structure", structure_path)
176
 
177
  # Lists to store pLDDT values and residue codes
178
  plddt_values = []
 
227
  model = ChaiModel(api_key)
228
  elif model_type == FoldingModel.PROTENIX:
229
  model = ProtenixModel(api_key)
230
+ elif model_type == FoldingModel.AF2:
231
+ model = AF2Model(api_key)
232
+ elif model_type == FoldingModel.OPENFOLD:
233
+ model = OpenFoldModel(api_key)
234
  else:
235
  raise ValueError(f"Model {model_type} not supported")
236
 
 
260
  progress(
261
  0.4 + (0.4 * i / total_predictions), desc=f"Converting model {model_idx}..."
262
  )
263
+ prediction_path = prediction["prediction_path"]
264
+ logger.info(f"Prediction file: {prediction_path}")
265
+ if Path(prediction_path).suffix == ".cif":
266
+ converted_pdb_path = str(
267
+ output_dir / f"{model.model_name}_prediction_{model_idx}.pdb"
268
+ )
269
+ convert_cif_to_pdb(str(prediction_path), str(converted_pdb_path))
270
+ pdb_paths.append(converted_pdb_path)
271
+ else:
272
+ pdb_paths.append(str(prediction_path))
273
+ plddt_vals, residue_codes = extract_plddt_from_structure(prediction_path)
274
  model_plddt_vals.append(plddt_vals)
275
  model_residue_codes.append(residue_codes)
276
 
277
  progress(0.8, desc="Generating plots...")
278
+ indexes = []
279
+ for pdb_path in pdb_paths:
280
+ if model_type in [
281
+ FoldingModel.AF2,
282
+ FoldingModel.OPENFOLD,
283
+ FoldingModel.SOLOSEQ,
284
+ ]:
285
+ indexes.append(int(Path(pdb_path).stem.split("_")[2]))
286
+ else:
287
+ indexes.append(int(Path(pdb_path).stem[-1]))
288
+
289
  plddt_fig = create_plddt_figure(
290
  plddt_vals=model_plddt_vals,
291
  model_name=model.model_name,
292
+ indexes=indexes,
293
  residue_codes=model_residue_codes,
294
  )
295
 
 
297
  return pdb_paths, plddt_fig
298
 
299
 
300
+ def align_structures(
301
+ model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]],
302
+ ) -> list[str]:
303
  """Align multiple PDB structures to the first structure.
304
 
305
  Args:
306
+ model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices
307
 
308
  Returns:
309
  list[str]: List of paths to aligned PDB files
 
312
  parser = PDBParser()
313
  io = PDBIO()
314
 
315
+ # Get the first structure as reference
316
+ first_model = next(iter(model_predictions.keys()))
317
+ first_pred = next(iter(model_predictions[first_model].values()))
318
+ ref_pdb_path = first_pred["pdb_path"]
319
+
320
+ # Parse reference structure and get CA atoms
321
+ ref_structure = parser.get_structure("reference", ref_pdb_path)
322
  ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"]
323
 
324
+ for model_type in model_predictions.keys():
325
+ for index, prediction in model_predictions[model_type].items():
326
+ pdb_path = prediction["pdb_path"]
327
+
328
+ # Parse the structure to align
329
+ structure = parser.get_structure(f"{model_type}_{index}", pdb_path)
330
+ atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"]
331
 
332
+ # Create superimposer
333
+ sup = Superimposer()
 
 
 
334
 
335
+ # Set the reference and moving atoms
336
+ sup.set_atoms(ref_atoms, atoms)
337
 
338
+ # Apply the transformation to all atoms in the structure
339
+ sup.apply(structure.get_atoms())
340
 
341
+ # Save the aligned structure
342
+ aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}")
343
+ io.set_structure(structure)
344
+ io.save(aligned_path)
345
 
346
+ model_predictions[model_type][index]["pdb_path"] = aligned_path
 
 
 
 
347
 
348
+ return model_predictions
349
 
350
 
351
  def filter_predictions(
352
+ model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]],
353
+ af2_selected: list[int],
354
+ openfold_selected: list[int],
355
+ solo_selected: list[int],
356
  chai_selected: list[int],
357
  boltz_selected: list[int],
358
  protenix_selected: list[int],
 
365
  chai_selected (list[int]): Selected Chai model indices
366
  boltz_selected (list[int]): Selected Boltz model indices
367
  protenix_selected (list[int]): Selected Protenix model indices
368
+ model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices
369
 
370
  Returns:
371
  tuple[list[str], go.Figure]: Filtered PDB paths and updated pLDDT plot
 
374
  filtered_fig = go.Figure()
375
 
376
  # Keep track of which traces to show
377
+ filtered_paths = []
378
 
379
  # Helper function to check if a trace should be visible
380
+ def should_show_trace(model_name, pred_index: int) -> bool:
381
+ if model_name == FoldingModel.CHAI and pred_index in chai_selected:
382
+ return True
383
+ if model_name == FoldingModel.BOLTZ and pred_index in boltz_selected:
384
+ return True
385
+ if model_name == FoldingModel.PROTENIX and pred_index in protenix_selected:
386
+ return True
387
+ if model_name == FoldingModel.AF2 and pred_index in af2_selected:
388
  return True
389
+ if model_name == FoldingModel.OPENFOLD and pred_index in openfold_selected:
390
  return True
391
+ if model_name == FoldingModel.SOLOSEQ and pred_index in solo_selected:
392
  return True
393
  return False
394
 
395
  # Filter traces and paths
396
+ for model_type in model_predictions.keys():
397
+ for index, prediction in model_predictions[model_type].items():
398
+ if should_show_trace(model_type, index):
399
+ filtered_fig.add_trace(prediction["plddt_trace"])
400
+ filtered_paths.append(prediction["pdb_path"])
401
 
402
  # Update layout
403
  filtered_fig.update_layout(
 
408
  template="simple_white",
409
  legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
410
  )
411
+ return filtered_paths, filtered_fig
412
 
413
+
414
+ def run_prediction(
415
+ sequence: str,
416
+ api_key: str,
417
+ model_type: FoldingModel,
418
+ format_fasta: bool = False,
419
+ ) -> dict[FoldingModel, dict[int, dict[str, Any]]]:
420
+ """Run a single prediction.
421
+
422
+ Args:
423
+ sequence (str): Amino acid sequence to predict structure for
424
+ api_key (str): Folding API key
425
+ model_type (FoldingModel): Folding model to use
426
+ format_fasta (bool): Whether to format the FASTA file
427
+
428
+ Returns:
429
+ Tuple containing:
430
+ - List of PDB paths
431
+ - pLDDT plot
432
+ - Dictionary mapping model to prediction indices
433
+ """
434
+ model_pdb_paths, model_plddt_traces = predict(
435
+ sequence, api_key, model_type, format_fasta=format_fasta
436
+ )
437
+ model_pdb_paths = sorted(model_pdb_paths)
438
+ model_predictions = {}
439
+ for pdb_path, plddt_trace in zip(model_pdb_paths, model_plddt_traces.data):
440
+ if model_type in [
441
+ FoldingModel.AF2,
442
+ FoldingModel.OPENFOLD,
443
+ FoldingModel.SOLOSEQ,
444
+ ]:
445
+ index = int(Path(pdb_path).stem.split("_")[2])
446
+ else:
447
+ index = int(Path(pdb_path).stem[-1])
448
+
449
+ model_predictions[index] = {"pdb_path": pdb_path, "plddt_trace": plddt_trace}
450
+ return model_predictions
451
 
452
 
453
  def predict_comparison(
454
  sequence: str, api_key: str, model_types: list[FoldingModel], progress=gr.Progress()
455
  ) -> tuple[
456
+ dict[FoldingModel, dict[int, dict[str, Any]]],
457
+ gr.CheckboxGroup,
458
+ gr.CheckboxGroup,
459
+ gr.CheckboxGroup,
460
  gr.CheckboxGroup,
461
  gr.CheckboxGroup,
462
  gr.CheckboxGroup,
 
 
 
463
  ]:
464
  """Predict protein structure from amino acid sequence using multiple models.
465
 
 
471
 
472
  Returns:
473
  tuple containing:
474
+ - dict[FoldingModel, dict[int, dict[str, Any]]]: Model predictions mapping
475
+ - gr.CheckboxGroup: AF2 predictions checkbox group
476
+ - gr.CheckboxGroup: OpenFold predictions checkbox group
477
+ - gr.CheckboxGroup: SoloSeq predictions checkbox group
478
  - gr.CheckboxGroup: Chai predictions checkbox group
479
  - gr.CheckboxGroup: Boltz predictions checkbox group
480
  - gr.CheckboxGroup: Protenix predictions checkbox group
 
 
 
481
  """
482
  if not api_key:
483
  raise gr.Error("Missing API key, please enter a valid API key")
484
 
485
+ progress(0, desc="Starting parallel predictions...")
486
+
487
+ # Run predictions in parallel
 
488
  model_predictions = {}
489
 
490
+ with concurrent.futures.ThreadPoolExecutor() as executor:
491
+ # Create a future for each model prediction
492
+ future_to_model = {
493
+ executor.submit(
494
+ run_prediction, sequence, api_key, model_type, True
495
+ ): model_type
496
+ for model_type in model_types
497
+ }
498
+
499
+ # Process results as they complete
500
+ total_models = len(model_types)
501
+ completed = 0
502
+
503
+ for future in concurrent.futures.as_completed(future_to_model):
504
+ model_type = future_to_model[future]
505
+ try:
506
+ model_preds = future.result()
507
+ model_predictions[model_type] = model_preds
508
+
509
+ completed += 1
510
+ progress(
511
+ completed / total_models,
512
+ desc=f"Completed {model_type} prediction...",
513
+ )
514
+ except Exception as e:
515
+ logger.error(f"Prediction failed for {model_type}: {str(e)}")
516
+ raise gr.Error(f"Prediction failed for {model_type}: {str(e)}")
517
 
518
  progress(0.9, desc="Aligning structures...")
519
+
520
+ model_predictions = align_structures(model_predictions)
 
 
 
 
 
 
 
 
521
 
522
  progress(1.0, desc="Done!")
523
 
524
  # Create checkbox groups for each model type
525
+ af2_predictions = gr.CheckboxGroup(
526
+ visible=model_predictions.get(FoldingModel.AF2) is not None,
527
+ choices=list(model_predictions.get(FoldingModel.AF2, {}).keys()),
528
+ value=list(model_predictions.get(FoldingModel.AF2, {}).keys()),
529
+ )
530
+ openfold_predictions = gr.CheckboxGroup(
531
+ visible=model_predictions.get(FoldingModel.OPENFOLD) is not None,
532
+ choices=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()),
533
+ value=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()),
534
+ )
535
+ solo_predictions = gr.CheckboxGroup(
536
+ visible=model_predictions.get(FoldingModel.SOLOSEQ) is not None,
537
+ choices=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()),
538
+ value=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()),
539
+ )
540
  chai_predictions = gr.CheckboxGroup(
541
  visible=model_predictions.get(FoldingModel.CHAI) is not None,
542
+ choices=list(model_predictions.get(FoldingModel.CHAI, {}).keys()),
543
+ value=list(model_predictions.get(FoldingModel.CHAI, {}).keys()),
544
  )
545
  boltz_predictions = gr.CheckboxGroup(
546
  visible=model_predictions.get(FoldingModel.BOLTZ) is not None,
547
+ choices=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()),
548
+ value=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()),
549
  )
550
  protenix_predictions = gr.CheckboxGroup(
551
  visible=model_predictions.get(FoldingModel.PROTENIX) is not None,
552
+ choices=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()),
553
+ value=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()),
554
  )
555
 
556
  return (
557
+ model_predictions,
558
+ af2_predictions,
559
+ openfold_predictions,
560
+ solo_predictions,
561
  chai_predictions,
562
  boltz_predictions,
563
  protenix_predictions,
 
 
564
  )
spr_af_scores_mapped.csv CHANGED
@@ -1,16 +1,54 @@
1
- antibody_name,antigen_lineage,kon (1/µM 1/s),koff (1/s),KD (nM),source_name,source_doi,pdb_id,antigen_chain_ids,antibody_heavy_chain_id,antibody_light_chain_id,structure_release_date,structure_resolution,gene_id,antigen_host,antigen_residue_indices,antigen_residue_indices_trimmed,antigen_domain,antibody_light_chain_host,epitope_residues,epitope_mutations,mutations,lineage_mutations_in_epitope,epitope_domain,epitope_is_multichain,epitope_isin_wt,paratope_residues,antibody_vh_sequence,antibody_vl_sequence,spike_sequence,antigen_sequence,antigen_sequence_without_indels,antigen_sequence_trimmed,antigen_sequence_trimmed_without_indels,antigen_pdb_sequence,antigen_pdb_sequence_trimmed,confidence_score_boltz,ptm_boltz,iptm_boltz,ligand_iptm_boltz,protein_iptm_boltz,complex_plddt_boltz,complex_iplddt_boltz,complex_pde_boltz,complex_ipde_boltz,interchain_pae_monomer,interface_pae_monomer,overall_pae_monomer,interface_plddt_monomer,average_plddt_monomer,ptm_monomer,interface_ptm_monomer,interchain_pae_multimer,interface_pae_multimer,overall_pae_multimer,interface_plddt_multimer,average_plddt_multimer,ptm_multimer,interface_ptm_multimer
2
- bd45_43;covox_269,B,0.293,0.00151,5.162393162,huhn_2025_spr,10.1038/s41467-024-54916-5,7neh,E,H,L,02/04/21,1.77,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(332, 527)",,RBD,homo sapiens (9606),R403 D405 E406 R408 T415 G416 K417 D420 Y421 Y453 L455 F456 R457 K458 S459 N460 Y473 Q474 A475 G476 F486 N487 Y489 Q493 S494 Y495 G496 F497 Q498 N501 Y505,,,,RBD,False,True,H:N30 R31 N32 Y33 Y52 S53 G54 G55 S56 F58 R94 D95 F96 Y97 E98 D101;L:S30 S31 Y32 Q90 L91 N92 S93 Y94,QVQLVESGGGLIQPGGSLRLSCAASGLTVNRNYMSWIRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLSLQMNSLRAEDTAIYYCARDFYEGSFDIWGQGTMVTVSS,AIQLTQSPSFLSASIGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFASYYCQQLNSYPAPVFGPGTKVDIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,,,-TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGK,,0.815568387508392,0.631265461444855,0.499751955270767,0.0,0.499751955270767,0.894522488117218,0.808752834796906,0.574461817741394,4.69568395614624,3.723450183868408,2.065487838091536,3.046133041381836,97.62024275169595,97.58975656824344,0.9224043719056731,0.8713607670503896,29.375048637390137,27.4414244016436,28.373729705810547,29.83158417666077,31.749196704388066,0.1932366931512888,0.1605053034841711
3
- bd45_41;covox_384,B,0.7466666666666667,0.0043133333333333,6.0200266319999995,huhn_2025_spr,10.1038/s41467-024-54916-5,7bep,C,D,F,12/24/20,2.61,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(332, 528)",,RBD,homo sapiens (9606),L452 L455 F456 I472 G482 V483 E484 G485 F486 Y489 F490 L492,,,,RBD,False,True,F:S30 Y32 N92 N93 A94 L95;D:Y50 R52 H55 T56 Y58 L98 F100 L100A E100B W100C,EVQLVESGGGLVKPGESLRLSCAASGFTFSDYYMTWIRQAPGKGLEWVSYIRSSGHTIYYADSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVYYCARGGVLRFLEWPLNAFDIWGQGTMVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNNALGTFGQGTKVEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,,,-TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGKK,,0.783776104450226,0.566782534122467,0.427239209413528,0.0,0.427239209413528,0.87291032075882,0.786508798599243,0.867737531661987,9.8238639831543,4.809793472290039,2.045966428021883,3.723745822906494,97.230994247972,97.19396149825464,0.8891827579215439,0.8724955180116689,29.54940414428711,27.382281917096904,28.28030586242676,31.741909817932445,35.71164433102995,0.2412751374627494,0.1611393982227129
4
- covox_58,B,0.479,0.00415,10.472440945,huhn_2025_spr,10.1038/s41467-024-54916-5,7qny,E,A,B,12/23/21,2.84,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(334, 516)",,RBD,homo sapiens (9606),E340 V341 A344 T345 R346 F347 A348 S349 A352 N354 K356 S399 K444 Y449 N450 R466,,,,RBD,False,True,A:S52 W52A N53 S54 G55 T56 I57 G58 T99 F100 V100B L100C;B:S95 D95A,QVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQPPGKGLEWVSGVSWNSGTIGYADSVKGRFIISRDNAKNSLYLQMNSLKAEDTALYYCAREVGGTFGVLISREGGLDYWGQGTLVTVSS,SYELTQPPSVSVAPGQTARITCGGNTIGSKSVHWYQQRPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDRVVFGGGTKLTVL,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,,,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,,0.813834190368652,0.623498022556305,0.497233539819717,0.0,0.497233539819717,0.892984330654144,0.831231832504273,0.777176558971405,6.74987268447876,3.416905641555786,2.73430979206958,3.271117687225342,95.47922926078462,96.64388937350576,0.9293244224193686,0.8333618649239609,29.62367248535156,27.908499213470808,28.87879753112793,27.93079605430594,28.99558687866513,0.1632285223405918,0.1555844490249545
5
- covox_278,B,0.4905,0.006315,12.865473560000002,huhn_2025_spr,10.1038/s41467-024-54916-5,7or9,E,H,L,06/04/21,2.34,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 527)",,RBD,homo sapiens (9606),T345 R346 Y351 N440 L441 D442 S443 K444 V445 G446 G447 N448 Y449 N450 Y451 L452 T470 E484 F490 L492 P499,,,,RBD,False,True,H:I30 R31 W50 N53 Y56 N58 I98 L99 T100 G100A Y100B L100C D100D;L:A30 S31 Y32 L33 A50 S52 S91 Y92 S93 T94 L95,QVQLVQSGAEVKKPGASVKVSCKASGYIFIRYGISWVRQAPGQGLEWMGWISANNGYTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDGGILTGYLDYFDHWGQGTLVTVSS,DIQMTQSPSSLSASVGDRLTITCRASQSIASYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYHCQQSYSTLGITFGPGTKVDIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGK,,0.780656039714813,0.592200815677643,0.456630498170853,0.0,0.456630498170853,0.861662447452545,0.78568172454834,0.749391078948975,6.61570310592651,3.967527985572815,1.887516614885252,3.1754387617111206,97.71261536639231,97.2269496569076,0.922128938711486,0.8817608181456824,29.532506942749023,26.75908168640427,27.047605514526367,42.820148956954306,52.943542943851064,0.3415059963152309,0.1679752252684513
6
- bd45_39;covox_45,B,0.2276666666666666,0.0065266666666666,28.70041021666667,huhn_2025_spr,10.1038/s41467-024-54916-5,7bel,X,C,D,12/23/20,2.53,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(334, 527)",,RBD,homo sapiens (9606),W353 N354 R355 K356 R357 I358 S359 N360 N394 Y396 P426 D428 K462 P463 F464 E465 R466 I468 E516 L518,,,,RBD,False,True,C:T31 Y32 S52 Y52A D53 S55 N56 Y58 K94 S97 Y98 A99 Y100 Y100A Y100B Y100C D101;D:N31 Y32 Y49 D50 N53 L54 E55 D92 N93,QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYAMHWVRQAPGKGLEWVAVLSYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGSYAYYYYMDVWGKGTTVTVSS,DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGGGSGTDFTFTITSLQPEDIATYYCQQYDNLPLTFGGGTKVDIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,,,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGK,,0.864258110523224,0.750974237918854,0.670291066169739,0.0,0.670291066169739,0.912749826908112,0.863511741161346,0.518989622592926,4.14870548248291,3.968512177467346,2.542677193895171,3.364487648010254,96.57266771591796,97.10952461348532,0.914509605012032,0.8440767834045971,29.85724639892578,28.17639105213889,29.10641288757324,28.077718924878248,29.73296412083579,0.1647350462688318,0.1528304609817936
7
- covox_253,B,0.69975,0.0343125,68.8637716275,huhn_2025_spr,10.1038/s41467-024-54916-5,7ben,C,D,F,12/24/20,2.5,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(336, 516)",,RBD,homo sapiens (9606),K417 Y421 Y453 L455 F456 R457 K458 Y473 Q474 A475 G476 S477 T478 P479 G485 F486 N487 C488 Y489 Q493,,,,RBD,False,True,D:T30 T31 S32 A33 W50 V52 G53 S54 N56 P95 S99 T100 S100A C100B Y100C D100D A100E F100F;F:S31 Y32 Y91 G92 Y96,QVQLVQSGPEVKKPGTSVKVSCKASGFTFTTSAVQWVRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTTTAYMELSSLRSEDTAVYFCAAPHCNSTSCYDAFDIWGQGTMVTVSS,DIQMTQSPGTLSLSPGEGATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSGATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPYTFGQGTKVEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,,,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,,0.914573848247528,0.883981227874756,0.856384038925171,0.0,0.856384038925171,0.929121315479279,0.915573418140411,0.315263271331787,0.520528972148895,4.548707008361816,2.2264484833746336,3.614177465438843,97.53705417062714,96.7483133214709,0.9031158034443396,0.8620604364444605,26.547210693359375,25.422632414234357,26.56904697418213,37.23036184257237,49.15953242545456,0.4282457681214566,0.1836282104429391
8
- bd45_42;covox_316,B,0.4048,0.04032,102.189625528,huhn_2025_spr,10.1038/s41467-024-54916-5,7beh,E,H,L,12/23/20,2.3,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 527)",,RBD,homo sapiens (9606),Y449 Y453 L455 F456 V483 E484 G485 F486 N487 C488 Y489 F490 L492 Q493 S494,,,,RBD,False,True,H:T30 G31 Y33 W50 N52 N53 S54 G56 N58 F98 S99 M100 V100A R100B;L:Y30C Y32 Y91 N95 W96,QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYTQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYSCARDMAFSMVRGSFDYWGQGTLVTVSS,QAVLTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNHWVFGGGTKLTVL,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGK,,0.836899876594544,0.708972632884979,0.600401759147644,0.0,0.600401759147644,0.896024405956268,0.814204096794128,0.500937461853027,3.40170907974243,3.9755221605300903,2.4679562958916876,3.3112473487854004,97.23949349040056,97.2444966855708,0.920971468523108,0.8482919517430124,29.79031562805176,17.87317807569991,25.04682159423828,59.24685751554468,57.925111098887655,0.5151529747182887,0.3037515428354363
9
- bd45_38;covox_75,B,0.0959999999999999,0.0313285714285714,343.82737152857146,huhn_2025_spr,10.1038/s41467-024-54916-5,7ben,C,G,I,12/24/20,2.5,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(336, 516)",,RBD,homo sapiens (9606),N440 L441 D442 S443 K444 V445 G446 G447 N448 Y449 N450 L452 E484 F490 L492 Q493 S494 Y495 G496,,,,RBD,False,True,I:S30 S31 W32 A50 A91 K92 S93 F94 F96;G:V98 V100 A100A A100B R100C N100D H100E Y100F Y100G N100H,QVQLVESGGGVVQPGRSLRLSCAASGFTFNNYPLHWVRQAPGKGPEWVAVISQDGGNKYYVDSVKGRFTISRDNSKNTLYLQMNNLRAEDTALYYCARDVVVVVAARNHYYNGMDVWGQGTTVTVSS,DIQLTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAVSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPFTFGPGTKVEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,,,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,,0.801655769348145,0.594999551773071,0.457680195569992,0.0,0.457680195569992,0.887649655342102,0.804755747318268,0.705984234809876,5.93294382095337,4.286665439605713,2.027977637602458,3.3147683143615723,97.71978281117325,96.8930778481744,0.9159003126831424,0.8735424882781723,26.957773208618164,25.519889059658937,26.960838317871097,37.47481094984693,47.88164702045448,0.4208675533072618,0.1824414576700511
10
- amubarvimab;bd45_21;brii_196;p2c_1f11,B,,,2.12,ju_2020_nature,10.1038/s41586-020-2380-z,7e8m,E,H,L,03/02/21,2.09,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 527)",,RBD,homo sapiens (9606),R403 T415 G416 N417 D420 Y421 Y453 L455 F456 R457 K458 S459 N460 Y473 Q474 A475 F486 N487 Y489 Q493 S494 Y495 Y501 Y505,K417N N501Y,,,RBD,False,False,H:S30 S31 N32 Y33 Y52 S53 G54 G55 S56 Y58 R94 L96 V97 V98 Y99 D101;L:S30 S30A S31 Y32 Q90 Y91 G92 S93,EVQLVESGGGLVQPGGSLRLSCAASGITVSSNYMNWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYHCARDLVVYGMDVWGQGTTVTVSS,EIVLTQSPGTLSISPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPTFGQGTKLEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGP,,0.806627571582794,0.604901313781738,0.469731539487839,0.0,0.469731539487839,0.890851616859436,0.782432734966278,0.653874278068543,5.79969501495361,3.889882802963257,2.1447279756893742,3.1076622009277344,97.63849821703336,97.03031474832582,0.9184391725953712,0.8667697875832223,29.34839630126953,27.19294934209429,28.324119567871097,28.5653600028306,32.27080636498517,0.2005613357989986,0.1631862178489821
11
- bd45_7;p2b_2f6,B,,,5.14,ju_2020_nature,10.1038/s41586-020-2380-z,8dcc,E,H,L,07/06/22,2.57,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 526)",,RBD,homo sapiens (9606),Y351 K444 G446 G447 N448 Y449 N450 L452 I472 V483 E484 G485 F490 L492 Q493 S494,,,,RBD,False,True,H:S30 S31 G31A Y32 H53 G98 I99 V100 V100A V100B P100C R100H;L:G30B Y30C N31 Y32 E50,QVQLQESGPGLVKPSETLSLTCTVSGYSISSGYYWGWIRQPPGKGLEWIGSIYHSGSTYYNPSLKTRVTISVDTSKNQFSLKLSSVTAADTAVYYCARAVVGIVVVPAAGRRAFDIWGQGTMVTVSS,QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNLVFGGGTKLTVL,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,,KNLCPFGEVFNATRFASVYAWNRKRISNCVYDYSVLYNSASFSTFKCYGVSPTKLKDLCFTYVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDTSTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLTFELLDAPPTVCG,,0.779910862445831,0.605188310146332,0.472482472658157,0.0,0.472482472658157,0.856767952442169,0.776917576789856,0.806709885597229,7.29232597351074,4.219140529632568,2.249224998168091,3.4182815551757812,97.19018392155026,97.32025286418748,0.9073658369599488,0.8607524475911202,29.55217933654785,27.74894137274779,28.309181213378903,30.19989435806049,34.6484895742348,0.2291970218536952,0.1572482637418456
12
- bd45_22;p2c_1a3,B,,,2.47,ju_2020_nature,10.1038/s41586-020-2380-z,7cdj,E,H,L,06/19/20,3.4,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 526)",,RBD,homo sapiens (9606),Y449 L452 L455 F456 G476 S477 T478 P479 C480 N481 V483 E484 G485 F486 N487 Y489 F490 L492 Q493 S494,,,,RBD,False,True,L:S30 Y32 L91 N92 S93 Y94;H:Y33 Y50 S52 S52A S53 G54 S55 T56 F96 S97 H98 Q99 Q100 L100A,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDFSHQQLVPSWGQGTLVTVSS,DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,0.804550170898438,0.655625939369202,0.529589176177979,0.0,0.529589176177979,0.873290419578552,0.78179919719696,0.559738159179688,4.29560947418213,4.319523096084595,2.2729202048269994,3.5641493797302246,96.98280673538328,96.97517601506055,0.9009612852404294,0.859393807173975,29.33012962341309,27.404896638158995,28.285560607910156,29.053955817539126,31.906904000955564,0.1927061390351921,0.1608966397629959
13
- p22a_1d1,B,,,5.79,zhang_2021_nat_comms,10.1038/s41467-021-24514-w,7chs,E,H,L,07/06/20,2.4,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 526)",,RBD,homo sapiens (9606),R403 D405 E406 T415 G416 K417 D420 Y421 Y453 L455 F456 R457 K458 S459 N460 Y473 Q474 A475 F486 N487 Y489 F490 L492 Q493 Y495 G496 F497 Q498 N501 Y505,,,,RBD,False,True,H:S30 S31 N32 Y33 Y52 S53 G54 G55 S56 Y58 R94 R96 D97 Y98 Y99 D101;L:S30 Y32 H90 L91 N92 Y94,EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRDYYGMDVWGQGTTVTVSS,DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLHLNSYRTFGLGTKVEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,0.799001395702362,0.583963930606842,0.443157732486725,0.0,0.443157732486725,0.887962281703949,0.783845901489258,0.580890655517578,4.91616106033325,3.8282817602157593,2.26178554607675,3.11441421508789,97.40743986108662,96.75478221302072,0.919711764602881,0.8600319811246402,29.322518348693848,27.32672814436949,28.218334197998047,29.90523019047135,33.48768084795022,0.2129387496796693,0.1617372981596133
14
- p5a_1d2,B,,,14.02,zhang_2021_nat_comms,10.1038/s41467-021-24514-w,7cho,A,B,C,07/06/20,2.56,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 526)",,RBD,homo sapiens (9606),R403 D405 T415 G416 K417 D420 Y421 Y453 L455 F456 R457 K458 S459 N460 Y473 Q474 A475 F486 N487 Y489 Q493 N501 G502 G504 Y505,,,,RBD,False,True,B:S30 S31 N32 Y33 Y52 S53 G54 G55 S56 Y58 R94 L96 Q97 V98 G99 A100 T100A D100C D101;C:G30A A30B G30C Y31 S95A,EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSIIYSGGSTYYADSVKGRFTISRDNSNNTLYLQMNSLRAEDTAVYYCARALQVGATSDYFDYWGQGTLVTVSS,QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDETDYYCQSCDSSLSVVVFGGGTKLTVL,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,,0.840566754341126,0.695268392562866,0.592147290706635,0.0,0.592147290706635,0.902671635150909,0.818431437015533,0.5360067486763,3.70838093757629,4.224268436431885,2.5905382789884297,3.5311367511749268,95.49891960723396,95.8846969442526,0.9089658019474836,0.8413878468162714,29.70927906036377,27.910024175490378,28.62742042541504,28.847876247700896,31.60096486393412,0.19691031850727,0.155568632470583
15
- p5a_3c8,B,,,1.3,zhang_2021_nat_comms,10.1038/s41467-021-24514-w,7chp,E,H,L,07/06/20,2.36,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(333, 522)",,RBD,homo sapiens (9606),R403 D405 E406 R408 T415 G416 K417 D420 Y421 Y449 Y453 L455 F456 R457 K458 S459 N460 Y473 Q474 A475 F486 N487 Y489 Q493 S494 Y495 G496 F497 Q498 N501 Y505,,,,RBD,False,True,L:S30 S31 Y32 H90 L91 N92 S93 Y94;H:S31 N32 Y33 Y52 S53 G54 G55 S56 Y58 R94 L96 Q97 E98 H99 D101,EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSFIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLQEHGMDVWGQGTTVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHLNSYPPGYTFGQGTKLEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPA,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPA,,,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPA,,0.799769759178162,0.636229515075684,0.505165874958038,0.0,0.505165874958038,0.873420715332031,0.791917443275452,0.623001635074616,4.9553861618042,3.5803418159484863,1.945987765655582,2.9488518238067627,97.97371806493044,96.72675060619106,0.9255255894656254,0.8783303373121849,29.55667209625244,27.446456582910205,28.21571350097656,29.73038928410532,33.446187252617214,0.2329041029431821,0.1604514663965165
16
- p5a_3c12,B,,,8.47,zhang_2021_nat_comms,10.1038/s41467-021-24514-w,7d0d,A,H,L,09/09/20,3.8,S,severe acute respiratory syndrome coronavirus 2 (2697049),"(27, 1146)","(327, 528)",spike,homo sapiens (9606),G416 K417 F456 A475 V483 E484 G485 F486 N487 Y489 F490 Q493,,,,RBD,False,True,L:Y30A S30C N30D N30E Y91;H:S31A L50 Y52 W53 D54 D56 R58 F97 L98 T99 Y100B,QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHSLFLTVGYSSSWSPFDYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPHTFGQGTKLEIK,MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT,AYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD,AYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,AYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,0.801107525825501,0.621712863445282,0.496211916208267,0.0,0.496211916208267,0.877331376075745,0.781339168548584,0.592956483364105,4.11549758911133,7.736447334289551,6.066557600040628,6.794885158538818,82.95154693193497,90.5823181115092,0.8142294848482255,0.6673523088520965,29.801297187805176,27.44481049316726,28.826437950134277,27.01779102581493,30.210954111641698,0.2179942246544585,0.1604690751968928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ antibody_name,antigen_lineage,pdb_id,KD (nM),antigen_sequence,antibody_vh_sequence,antibody_vl_sequence,interchain_pae_monomer,interface_pae_monomer,overall_pae_monomer,interface_plddt_monomer,average_plddt_monomer,ptm_monomer,interface_ptm_monomer,interchain_pae_multimer,interface_pae_multimer,overall_pae_multimer,interface_plddt_multimer,average_plddt_multimer,ptm_multimer,interface_ptm_multimer,confidence_score_boltz,ptm_boltz,iptm_boltz,complex_plddt_boltz,complex_iplddt_boltz,complex_pde_boltz,complex_ipde_boltz
2
+ bd45_43;covox_269,B,7neh,5.162393162,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QVQLVESGGGLIQPGGSLRLSCAASGLTVNRNYMSWIRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLSLQMNSLRAEDTAIYYCARDFYEGSFDIWGQGTMVTVSS,AIQLTQSPSFLSASIGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFASYYCQQLNSYPAPVFGPGTKVDIK,3.723450183868408,2.065487838091536,3.046133041381836,-97.62024275169595,-97.58975656824344,-0.9224043719056731,-0.8713607670503896,29.375048637390137,27.4414244016436,28.373729705810547,-29.83158417666077,-31.749196704388066,-0.1932366931512888,-0.1605053034841711,0.8122190833091736,-0.622314453125,-0.4887041449546814,-0.8930978178977966,-0.806194543838501,0.5618233680725098,4.58146858215332
3
+ bd45_41;covox_384,B,7bep,6.0200266319999995,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGGLVKPGESLRLSCAASGFTFSDYYMTWIRQAPGKGLEWVSYIRSSGHTIYYADSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVYYCARGGVLRFLEWPLNAFDIWGQGTMVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNNALGTFGQGTKVEIK,4.809793472290039,2.045966428021883,3.723745822906494,-97.230994247972,-97.19396149825464,-0.8891827579215439,-0.8724955180116689,29.54940414428711,27.382281917096904,28.28030586242676,-31.741909817932445,-35.71164433102995,-0.2412751374627494,-0.1611393982227129,0.784950315952301,-0.5717063546180725,-0.433135837316513,-0.8729039430618286,-0.7885793447494507,0.8438798785209656,9.28584098815918
4
+ covox_58,B,7qny,10.472440945,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,QVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQPPGKGLEWVSGVSWNSGTIGYADSVKGRFIISRDNAKNSLYLQMNSLKAEDTALYYCAREVGGTFGVLISREGGLDYWGQGTLVTVSS,SYELTQPPSVSVAPGQTARITCGGNTIGSKSVHWYQQRPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDRVVFGGGTKLTVL,3.416905641555786,2.73430979206958,3.271117687225342,-95.47922926078462,-96.64388937350576,-0.9293244224193686,-0.8333618649239609,29.62367248535156,27.908499213470808,28.87879753112793,-27.93079605430594,-28.99558687866513,-0.1632285223405918,-0.1555844490249545,0.8313369154930115,-0.676577627658844,-0.5685209631919861,-0.897040843963623,-0.833217978477478,0.7001155614852905,5.648256778717041
5
+ covox_278,B,7or9,12.865473560000002,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QVQLVQSGAEVKKPGASVKVSCKASGYIFIRYGISWVRQAPGQGLEWMGWISANNGYTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDGGILTGYLDYFDHWGQGTLVTVSS,DIQMTQSPSSLSASVGDRLTITCRASQSIASYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYHCQQSYSTLGITFGPGTKVDIK,3.967527985572815,1.887516614885252,3.1754387617111206,-97.71261536639231,-97.2269496569076,-0.922128938711486,-0.8817608181456824,29.532506942749023,26.75908168640427,27.047605514526367,-42.820148956954306,-52.943542943851064,-0.3415059963152309,-0.1679752252684513,0.7772464752197266,-0.5814127326011658,-0.4433014094829559,-0.8607327342033386,-0.8026694655418396,0.8121297359466553,7.579174995422363
6
+ bd45_39;covox_45,B,7bel,28.70041021666667,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYAMHWVRQAPGKGLEWVAVLSYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGSYAYYYYMDVWGKGTTVTVSS,DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGGGSGTDFTFTITSLQPEDIATYYCQQYDNLPLTFGGGTKVDIK,3.968512177467346,2.542677193895171,3.364487648010254,-96.57266771591796,-97.10952461348532,-0.914509605012032,-0.8440767834045971,29.85724639892578,28.17639105213889,29.10641288757324,-28.077718924878248,-29.73296412083579,-0.1647350462688318,-0.1528304609817936,0.8353190422058105,-0.6677908301353455,-0.5568398833274841,-0.9049388766288756,-0.8570007085800171,0.6362362504005432,6.423116207122803
7
+ covox_253,B,7ben,68.8637716275,CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,QVQLVQSGPEVKKPGTSVKVSCKASGFTFTTSAVQWVRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTTTAYMELSSLRSEDTAVYFCAAPHCNSTSCYDAFDIWGQGTMVTVSS,DIQMTQSPGTLSLSPGEGATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSGATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPYTFGQGTKVEIK,4.548707008361816,2.2264484833746336,3.614177465438843,-97.53705417062714,-96.7483133214709,-0.9031158034443396,-0.8620604364444605,26.547210693359375,25.422632414234357,26.56904697418213,-37.23036184257237,-49.15953242545456,-0.4282457681214566,-0.1836282104429391,0.9115001559257508,-0.8542655110359192,-0.8447184562683105,-0.9281955361366272,-0.9091010093688964,0.319677323102951,0.5802255868911743
8
+ bd45_42;covox_316,B,7beh,102.189625528,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYTQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYSCARDMAFSMVRGSFDYWGQGTLVTVSS,QAVLTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNHWVFGGGTKLTVL,3.9755221605300903,2.4679562958916876,3.3112473487854004,-97.23949349040056,-97.2444966855708,-0.920971468523108,-0.8482919517430124,29.79031562805176,17.87317807569991,25.04682159423828,-59.24685751554468,-57.925111098887655,-0.5151529747182887,-0.3037515428354363,0.8498350977897644,-0.7469604015350342,-0.6533957719802856,-0.8989449143409729,-0.817704975605011,0.4679538607597351,2.8642566204071045
9
+ bd45_38;covox_75,B,7ben,343.82737152857146,PFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,QVQLVESGGGVVQPGRSLRLSCAASGFTFNNYPLHWVRQAPGKGPEWVAVISQDGGNKYYVDSVKGRFTISRDNSKNTLYLQMNNLRAEDTALYYCARDVVVVVAARNHYYNGMDVWGQGTTVTVSS,DIQLTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYAVSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQAKSFPFTFGPGTKVEIK,4.280910491943359,1.8528887355045576,3.296236038208008,-97.84887746209483,-97.12766254435262,-0.9162785046409112,-0.883798736684097,29.72571563720703,28.106682943667305,29.010249137878414,-28.289168829306377,-30.9851561767962,-0.1754442919273257,-0.1535423486688642,0.8054940104484558,-0.6095264554023743,-0.4771669507026672,-0.8875757455825806,-0.816137433052063,0.6916928887367249,5.467700958251953
10
+ amubarvimab;bd45_21;brii_196;p2c_1f11,B,7e8m,2.12,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,EVQLVESGGGLVQPGGSLRLSCAASGITVSSNYMNWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYHCARDLVVYGMDVWGQGTTVTVSS,EIVLTQSPGTLSISPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPTFGQGTKLEIK,3.889882802963257,2.1447279756893742,3.1076622009277344,-97.63849821703336,-97.03031474832582,-0.9184391725953712,-0.8667697875832223,29.34839630126953,27.19294934209429,28.324119567871097,-28.5653600028306,-32.27080636498517,-0.2005613357989986,-0.1631862178489821,0.8260219693183899,-0.6421446204185486,-0.5207476615905762,-0.9023404717445374,-0.8012434840202332,0.5480695366859436,4.200762748718262
11
+ bd45_7;p2b_2f6,B,8dcc,5.14,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,QVQLQESGPGLVKPSETLSLTCTVSGYSISSGYYWGWIRQPPGKGLEWIGSIYHSGSTYYNPSLKTRVTISVDTSKNQFSLKLSSVTAADTAVYYCARAVVGIVVVPAAGRRAFDIWGQGTMVTVSS,QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNLVFGGGTKLTVL,4.219140529632568,2.249224998168091,3.4182815551757812,-97.19018392155026,-97.32025286418748,-0.9073658369599488,-0.8607524475911202,29.55217933654785,27.74894137274779,28.309181213378903,-30.19989435806049,-34.6484895742348,-0.2291970218536952,-0.1572482637418456,0.7698132395744324,-0.5812377333641052,-0.443026065826416,-0.8515099883079529,-0.762564480304718,0.883591890335083,8.343637466430664
12
+ bd45_22;p2c_1a3,B,7cdj,2.47,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDFSHQQLVPSWGQGTLVTVSS,DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPLTFGGGTKVEIK,4.319523096084595,2.2729202048269994,3.5641493797302246,-96.98280673538328,-96.97517601506055,-0.9009612852404294,-0.859393807173975,29.33012962341309,27.404896638158995,28.285560607910156,-29.053955817539126,-31.906904000955564,-0.1927061390351921,-0.1608966397629959,0.8156558871269226,-0.6943522095680237,-0.5846490859985352,-0.8734075427055359,-0.7654898166656494,0.5038766860961914,3.305140733718872
13
+ p22a_1d1,B,7chs,5.79,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRDYYGMDVWGQGTTVTVSS,DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLHLNSYRTFGLGTKVEIK,3.8282817602157593,2.26178554607675,3.11441421508789,-97.40743986108662,-96.75478221302072,-0.919711764602881,-0.8600319811246402,29.322518348693848,27.32672814436949,28.218334197998047,-29.90523019047135,-33.48768084795022,-0.2129387496796693,-0.1617372981596133,0.8081307411193848,-0.6247673034667969,-0.501613974571228,-0.8847599029541016,-0.8055034279823303,0.5922093987464905,4.902284145355225
14
+ p5a_1d2,B,7cho,14.02,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,EVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSIIYSGGSTYYADSVKGRFTISRDNSNNTLYLQMNSLRAEDTAVYYCARALQVGATSDYFDYWGQGTLVTVSS,QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDETDYYCQSCDSSLSVVVFGGGTKLTVL,4.224268436431885,2.5905382789884297,3.5311367511749268,-95.49891960723396,-95.8846969442526,-0.9089658019474836,-0.8413878468162714,29.70927906036377,27.910024175490378,28.62742042541504,-28.847876247700896,-31.60096486393412,-0.19691031850727,-0.155568632470583,0.85244220495224,-0.728440523147583,-0.6363945007324219,-0.9064540863037108,-0.8290671706199646,0.5106469988822937,3.337573528289795
15
+ p5a_3c8,B,7chp,1.3,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPA,EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSFIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLQEHGMDVWGQGTTVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHLNSYPPGYTFGQGTKLEIK,3.5803418159484863,1.945987765655582,2.9488518238067627,-97.97371806493044,-96.72675060619106,-0.9255255894656254,-0.8783303373121849,29.55667209625244,27.446456582910205,28.21571350097656,-29.73038928410532,-33.446187252617214,-0.2329041029431821,-0.1604514663965165,0.7977039217948914,-0.63083815574646,-0.4971179366111755,-0.8728504180908203,-0.7950778007507324,0.639260470867157,5.186392307281494
16
+ p5a_3c12,B,7d0d,8.47,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTATYYCAHSLFLTVGYSSSWSPFDYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPHTFGQGTKLEIK,7.6485068798065186,5.97126897492192,6.7199506759643555,-83.05635573300732,-90.64425766741088,-0.8163897656562413,-0.671605208580836,29.85387134552002,27.43845858222049,28.873510360717773,-26.92122404475132,-30.364718345462027,-0.2184182315071453,-0.1605370419381908,0.8014394640922546,-0.6204851269721985,-0.4947324395179748,-0.878116250038147,-0.7781279683113098,0.600617527961731,4.05993127822876
17
+ bd45_54;cb6;etesevimab;js_016;ly3832479;ly_cov016;shi_cb6,B,7c01,27.2,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSMNTLFLQMNSLRAEDTAVYYCARVLPMYGDYLDYWGQGTLVTVSS,DIVMTQSPSSLSASVGDRVTITCRASQSISRYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPEYTFGQGTKLEIK,3.756307363510132,2.128447752601498,3.090202569961548,-97.6461879391296,-97.26070626999866,-0.9254551526847368,-0.8677110453208677,29.32232093811035,27.24074842582775,27.511402130126953,-34.92356155562333,-39.68775474051035,-0.2896420033073744,-0.1626670353904362,0.819520890712738,-0.6361677050590515,-0.5081703662872314,-0.8973584771156311,-0.8270019292831421,0.6209957599639893,5.416858196258545
18
+ b38;bd45_74,B,7bz5,226.1,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGGLVQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVYYCAREAYGMDVWGQGTTVTVSS,DIVMTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPPYTFGQGTKLEIK,3.6588540077209473,2.0183379865718143,2.985830068588257,-97.89573736797102,-97.61834343774912,-0.9239897998675464,-0.874104045015708,29.322489738464355,26.88337370126633,28.34695339202881,-28.683235707038403,-30.07956744592768,-0.1800356511892592,-0.1665891106854405,0.807386040687561,-0.6099106669425964,-0.4734986424446106,-0.8908578753471375,-0.8007948994636536,0.6189569234848022,5.238494873046875
19
+ bd30_236;bd_236,B,7x63,7.8,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,EVQLVESGGGLIQPGGSLRLSCAASGITVGWNYMSWVRQAPGKGLEWVSVIYPGGSTDYADSVKGRFTISRDKSKNTLYLQMNSLRAEDTAVYYCARDLGEAGGMDVWGQGTTVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQGIPSSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYPPAFGGGTKVEIK,3.994213700294494,2.2775376655654713,3.2573500871658325,-97.19073000420336,-96.94722943386157,-0.9147700089566092,-0.8591293000768674,29.353395462036133,27.30239335619582,28.055672645568848,-30.22021127797199,-33.64002650613898,-0.2220753391530885,-0.1619999006405755,0.8036960959434509,-0.5981668829917908,-0.4583724439144134,-0.8900269269943237,-0.7891557812690735,0.6274881958961487,5.3838348388671875
20
+ 604;bd30_604;bd_604;dxp_604,B,8hws,0.05,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGGLIQPGGSLRLSCAASGIIVSSNYMTWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAVYYCARDLGPYGMDVWGQGTTVTVSS,DIQLTQSPSFLSASVGDRVTITCRASQGISSDLAWYQQKPGKAPNLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSDLYTFGQGTKLEIK,4.400998830795288,2.6637176256842596,3.6481235027313232,-95.7119270882778,-96.02421529273563,-0.9042364431063752,-0.8372930292772083,29.172849655151367,27.17382807738242,28.11342716217041,-28.935454849283772,-31.41067246232605,-0.1813220901460277,-0.1633943722845848,0.8845887184143066,-0.8007594347000122,-0.7316951155662537,-0.9228121638298036,-0.8624889850616455,0.3976951241493225,1.709693431854248
21
+ bd30_629;bd_629,B,7ch5,0.8,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,EVQLVESGGGLIQPGGSLRLSCAASEFIVSRNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLNLQMNSLRAEDTAVYYCARDYGDYYFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQGVSSFLAWYQQKPGQAPRLLIHGASSRATGIPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK,4.037263870239258,2.3809633372494807,3.3240456581115723,-96.7494604527708,-97.09161542506467,-0.9133181748939044,-0.8532259404344162,29.114646911621097,27.135868763398072,27.843456268310547,-31.787164043719393,-35.90008802885798,-0.2268176133475881,-0.1638083851371557,0.8074035048484802,-0.6194781064987183,-0.4824706017971039,-0.8886366486549377,-0.7906217575073242,0.625114917755127,5.724989414215088
22
+ bd45_67;c102,B,7k8m,49.0,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFEL,QVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDYYFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK,3.752142310142517,2.101394569255271,3.141359806060791,-97.29175885740376,-97.4493696803594,-0.9221204626888536,-0.8692774138047807,29.37706756591797,26.87093691440514,28.205734252929688,-29.62826380585027,-33.254081576067605,-0.2044245860783137,-0.1667272901786875,0.7967143654823303,-0.5979894995689392,-0.4538632929325104,-0.8824270963668823,-0.7720768451690674,0.652141809463501,6.204518795013428
23
+ bd45_65;c105,B,6xcm,17.4,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGEGWELPYDYWGQGTLVTVSS,QSALTQPPSASGSPGQSVTISCTGTSSDVGGYKYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSNNFVVFGGGTKLTVL,6.4364333152771,4.752463420641791,5.573083877563477,-86.17781052860835,-90.8829789188625,-0.8500728778464863,-0.7284539301241402,29.49038600921631,27.630793411858047,27.978410720825195,-31.844763150545965,-36.08030496808164,-0.2516151569431434,-0.1584917251752475,0.7777058482170105,-0.6262052655220032,-0.4964358806610107,-0.8480232954025269,-0.7546373009681702,0.6825246214866638,4.584840297698975
24
+ bd45_50;cova2_04,B,7jmo,55.5,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,QVQLVETGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLERAGGMDVWGQGTMVTVSS,EIVMTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSLYTFGQGTKVDIK,3.695557117462158,2.0126694790095767,3.020557641983032,-97.674999697212,-97.65659786042384,-0.9247828269753228,-0.8744344317977322,29.542219161987305,27.427869734337285,28.341693878173828,-30.968098493196603,-33.988426083034526,-0.2087389638321222,-0.160650408768734,0.8102996945381165,-0.6179168820381165,-0.4868167042732239,-0.8911703824996948,-0.789629340171814,0.5591203570365906,4.190255165100098
25
+ bd45_16;s2h14,B,7jx3,135.5,ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK,EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAWMSWVRQAPGKGLEWVGRIKSKTDGGTTDYAAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTGSETYYYDSSGPFDYWGQGTLVTVSS,NFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNQVFGGGTKLTVL,4.396639585494995,2.5640318413021332,3.478428840637207,-96.93132684309798,-96.95184059736698,-0.9134134196804902,-0.8428759742296937,29.78923797607422,27.947787843652673,28.05274200439453,-37.51338034117831,-45.126821650193754,-0.2948394806532725,-0.1551774689219985,0.8256539702415466,-0.6639388203620911,-0.5543997287750244,-0.8934674859046936,-0.8365002274513245,0.6085013747215271,5.247827053070068
26
+ bd45_3;casirivimab;regn10933,B,6xdg,1.9,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYITYSGSTIYYADSVKGRFTISRDNAKSSLYLQMNSLRAEDTAVYYCARDRGTTMVPFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCQASQDITNYLNWYQQKPGKAPKLLIYAASNLETGVPSRFSGSGSGTDFTFTISGLQPEDIATYYCQQYDNLPLTFGGGTKVEIK,5.710702896118164,3.430699833440471,4.736518383026123,-91.9844107664326,-94.32365213473588,-0.8591901594635216,-0.7955565692008225,29.557764053344727,28.039246331652937,28.93879508972168,-27.264424099887073,-28.311848533018424,-0.1654364034989729,-0.154234194414334,0.7955614328384399,-0.5911784172058105,-0.4543851613998413,-0.8808554410934448,-0.7964072227478027,0.6016823053359985,5.142148017883301
27
+ bamlanivimab;bd45_11;ly3819253;ly_cov555,B,7kmg,2.7,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSNYAISWVRQAPGQGLEWMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGYYEARHYYYYYAMDVWGQGTAVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSISSYLSWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTITSLQPEDFATYYCQQSYSTPRTFGQGTKVEIK,4.198333740234375,2.1230251679084446,3.4514501094818115,-97.23854384579566,-96.413913097922,-0.911500330370605,-0.8680247844688443,29.7426815032959,28.01211544187988,28.88332176208496,-27.087260252529877,-29.38181419479705,-0.1706229401120542,-0.1545134142494904,0.7652053236961365,-0.5884153842926025,-0.45290407538414,-0.8432806134223938,-0.7909672260284424,0.902398943901062,9.020432472229004
28
+ ab23,B,7byr,734.7,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMNWVRQAPGQGLEWMGWINTNTGNPTYAQGFTGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCARPQGGSSWYRDYYYGMDVWGQGTTVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPYTFGQGTKLEIK,5.7584264278411865,3.619439350778309,5.493600845336914,-89.05999039842195,-91.59792621887976,-0.8423061162382275,-0.7856090856919846,29.772135734558105,27.595409660661165,28.84312438964844,-27.96239689718867,-30.585276915045455,-0.1896679995259579,-0.1588660352695431,0.7833446860313416,-0.5736169219017029,-0.437797486782074,-0.8697314262390137,-0.8149273991584778,0.8495485186576843,8.084565162658691
29
+ bd45_49;cova2_39,B,7jmp,23.5,FGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFE,QVQLVETGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYTGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAHVDTAMVESGAFDIWGQGTRVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEVTKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTWVFGGGTKLTVL,4.123084545135498,2.5868978436307715,3.425662636756897,-97.07965603699648,-94.9635953041548,-0.9084263459640208,-0.8415920728021226,29.572556495666504,28.100643969740464,28.463546752929688,-31.28862128436322,-34.94716275064345,-0.2375795844685743,-0.1536041769967028,0.8876116871833801,-0.8216595649719238,-0.766454815864563,-0.9179009199142456,-0.886243462562561,0.3559711873531341,0.8455747365951538
30
+ c121,B,7k8x,7.5,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWISPVSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARAPLFPTGVLAGDYYYYGMDVWGQGTTVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTLVFGGGTKLTVL,5.367863893508911,4.483937104048992,5.145024299621582,-85.6356295948908,-91.17540300391344,-0.8588649368145442,-0.7416119579963584,29.6442232131958,28.015230963719116,28.427989959716797,-32.02229703157973,-38.20697142266387,-0.2564747913380424,-0.1544813249210026,0.8722413182258606,-0.8327726721763611,-0.7821183800697327,-0.8947719931602478,-0.8302052617073059,0.4585577845573425,1.4906868934631348
31
+ bd45_60;bms_986413;c144,B,7k90,118.6,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDKSKNTLYLQMNRLRAEDTAVYYCAREGEVEGYNDFWSGYSRDRYYFDYWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTVL,5.820320129394531,3.9999246694254538,4.884236812591553,-90.4167053220531,-93.13394286105442,-0.8699632335266255,-0.7659321848957601,29.813172340393063,27.90726715368783,28.55602264404297,-29.55138505809996,-36.34748318966482,-0.2374338507346409,-0.1555972288392972,0.8830507397651672,-0.880916953086853,-0.8472033739089966,-0.8920125961303711,-0.8481523394584656,0.4691607654094696,1.2180975675582886
32
+ bd45_27;h4,B,7l58,18.5,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARVPYCSSTSCHRDWYFDLWGRGTLVT,DIQMTQSPLSLPVTPGEPASISCRSSQSLLDSDDGNTYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEI,6.13195276260376,4.547904402799018,5.774697303771973,-87.23887393031404,-89.62019776005573,-0.8433900688767302,-0.738456097596274,29.605708122253414,27.520676323357613,28.681806564331055,-31.351063090649603,-31.542517608586195,-0.2230279421216539,-0.1596595162108121,0.7883245348930359,-0.5900335311889648,-0.45372074842453,-0.8719754815101624,-0.7731411457061768,0.7354199886322021,5.9015607833862305
33
+ s2e12,B,7r6x,2.1,PNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVQSGPEVKKPGTSVRVSCKASGFTFTSSAVQWVRQARGQRLEWVGWIVVGSGNTNYAQKFHERVTITRDMSTSTAYMELSSLRSEDTAVYYCASPYCSGGSCSDGFDIWGQGTMVTVSS,DIVLTQTPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYVGLTGWTFGQGTKVEIK,4.6941118240356445,2.347662512015139,3.8155436515808105,-96.81582520131975,-96.84442030371952,-0.8997209434234145,-0.8551222531433533,29.05059814453125,26.912014382267344,27.210227966308594,-35.441449581823186,-41.72914114632976,-0.2884613692589819,-0.1662713324563222,0.9162670373916626,-0.8048012256622314,-0.8496560454368591,-0.9329198002815248,-0.9126208424568176,0.3305166363716125,0.6463102698326111
34
+ s2m11,B,8dlw,82.5,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPISSGTSYAQTFQGRVTMTSDTSITTAYMELSRLRSDDTAVYYCARAAPFYDFWSGYSYFDYWGQGTLVTVSS,EIVMMQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSAWTFGQGTKVEIK,3.7903997898101807,2.1359647882028416,3.2721967697143555,-97.80599946634992,-97.43009747678546,-0.9220662301772358,-0.8672763132718851,29.79399871826172,16.748294983378273,25.030134201049805,-58.596329442050504,-55.56283241179506,-0.5163574995547012,-0.3274064220641481,0.8740434050559998,-0.7723896503448486,-0.6921893954277039,-0.9195069074630736,-0.8647580146789551,0.468371719121933,1.7737302780151367
35
+ 2_4,B,6xey,57.0,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYTQMFQGRVTMTRDTSISTAYMEVSRLRSDDTAVYYCARDRSWAVVYYYMDVWGKGTTVTVSS,QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNLVFGGGTKLTVL,4.929173231124878,3.3410111556517585,4.407776355743408,-93.67488182433378,-93.86518926137244,-0.8941374094049486,-0.8003276464934338,29.74277687072754,27.263461143972293,28.40849781036377,-29.0122781152488,-33.949656576746975,-0.2652493493166934,-0.162420914404931,0.8257797360420227,-0.6743962168693542,-0.5556591749191284,-0.8933098316192627,-0.8285577297210693,0.5602933168411255,3.839163303375244
36
+ bd_368_2,B,7chf,10.6,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG,EVQLLESGGGVVQPGGSLRLSCAASGFAFTTYAMNWVRQAPGRGLEWVSAISDGGGSAYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTRGRGLYDYVWGSKDYWGQGTLVTVSS,DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPGTFGQGTRLEIK,4.461946725845337,2.5024072363972665,3.743009328842163,-96.6514387625579,-96.00206107838125,-0.8990554553518113,-0.8463458903492488,29.73224639892578,27.509575458798825,28.624370574951172,-27.203968877407675,-30.601991341145418,-0.1817402522234116,-0.159777717187517,0.8255629539489746,-0.6854852437973022,-0.5700072050094604,-0.8894519209861755,-0.8053597807884216,0.4920808672904968,3.1887125968933105
37
+ bd45_68;c002,B,7k8s,74.4,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGGVVQPGRSLRLSCAASGFTFSIYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEGRPSDIVVVVAFDYWGQGTLVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRTFGQGTKVEIK,6.955448627471924,4.498572886354976,5.247814178466797,-88.45099056135865,-92.24203672341382,-0.8443057644254821,-0.7408887061541052,29.72929000854492,28.098661717970188,28.874387741088867,-27.69668585327663,-29.99647051692373,-0.1679655828196952,-0.1536244771481252,0.8013404011726379,-0.6110754609107971,-0.4823541939258575,-0.8810868859291077,-0.7911386489868164,0.7178725004196167,5.449672222137451
38
+ bd45_34;cv07_270,B,6xkp,18.7,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMTWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARARGSSGWYRIGTRWGNWFDPWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSNVVFGGGTMLTVL,4.175543785095215,2.373752709574576,3.2796013355255127,-97.11940219835168,-96.8978089488789,-0.91774189525141,-0.8536361920041631,29.842841148376465,28.366062623713095,28.977081298828125,-29.332427010360867,-32.087063805612196,-0.2027383995976357,-0.150910121448011,0.7781082987785339,-0.6234115362167358,-0.5006304979324341,-0.8474777340888977,-0.790484607219696,0.9119642972946168,9.496830940246582
39
+ bd45_121;p17,B,7cwn,15.7,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHATLMNNKDIWGQGTLVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRTFGQGTKVEIK,6.84061336517334,3.3883153531900807,5.355259895324707,-91.01590573969212,-91.86554195831675,-0.8483963689504885,-0.7978076982472123,29.83927631378174,28.18584484354655,28.651819229125977,-31.90575813246104,-34.886829715492354,-0.2030847805572237,-0.1527341695090403,0.7935856580734253,-0.5725716948509216,-0.4322860836982727,-0.8839105367660522,-0.8123855590820312,1.0896159410476685,11.85800075531006
40
+ bd45_17;s2h13,B,7jv4,256.0,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGDSVQPGGSLRLSCAAAGFTFSSYWMNWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCALSSGYSGYAGNYWGQGTLVTVSS,QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPRTLIYDTSNKHSWTPARFSGSLLGGKAALTLSGARPEDEAEYYCLLSYSGARGVFGGGTKLTVL,4.609053611755371,3.1428052167577816,4.074997901916504,-94.2291900688914,-94.97592877896878,-0.8898500575029613,-0.8109731377590895,29.22559928894043,26.65667165256751,27.81351947784424,-35.7667397377162,-36.70547969983458,-0.2472369485580977,-0.1691259723001678,0.7806947231292725,-0.5837822556495667,-0.4415719509124756,-0.8654754161834717,-0.7569332122802734,0.7465585470199585,6.0116705894470215
41
+ bd45_4;imdevimab;regn10987,B,7zjl,20.5,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMYWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRTEDTAVYYCASGSDYGDYLLVYWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVSNRFSGSKSGNTASLTISGLQSEDEADYYCNSLTSISTWVFGGGTKLTVL,5.395852088928223,2.764960693573979,3.951341152191162,-96.16693381684875,-96.03590007174324,-0.8943583603603353,-0.8316607174100925,29.71203994750977,28.470846238428233,29.04074764251709,-27.50479672103421,-30.607489529117142,-0.1874180391163263,-0.1498596010958033,0.7804175019264221,-0.5642211437225342,-0.4231846034526825,-0.8697257041931152,-0.7838578820228577,0.8087309002876282,6.416257381439209
42
+ bd45_64;c110,B,7k8v,2.4,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLQQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYMQWSSLKASDTAMYYCARSFRDDPRIAVAGPADAFDIWGQGTMVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQSISYWLAWYQQKPGKAPKLLIYQASSLESGVPSRFSGSESGTEFTLTISSLQPDDFATYYCQQYNSYPYTFGQGTKLEIK,12.731308937072754,6.661313110644916,9.542131423950195,-78.88927970102706,-85.52292529093127,-0.7444392206569428,-0.6414092689469812,29.84807586669922,27.80913458974738,28.929767608642575,-27.53958242696327,-29.227469200424103,-0.1722203973274763,-0.1566185095604561,0.8359307646751404,-0.7372189164161682,-0.655605673789978,-0.8810120224952698,-0.8059696555137634,0.6033827662467957,3.5965394973754883
43
+ bd45_63;c119,B,7k8w,10.8,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKLQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARANHETTMDTYYYYYYMDVWGKGTTVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYKYVSWYQRHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTSVVFGGGTQLTVL,5.443324089050293,3.616330442657041,4.4308552742004395,-92.09268544002582,-94.12550294907984,-0.8780551709712483,-0.7857719283312719,29.815004348754883,27.977888032174477,28.708821296691895,-29.376624644153782,-31.6704993449153,-0.2108832232352169,-0.1548663897398603,0.7926152944564819,-0.598787784576416,-0.4686140120029449,-0.873615562915802,-0.7956722378730774,0.6595845222473145,5.198920249938965
44
+ bd45_61;bms_986414;c135,B,7k8z,5.0,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVIPFDGRNKYYADSVTGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASSSGYLFHSDYWGQGTLVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWFQQKPGKAPKLLIYEASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPWTFGQGTKVEIK,8.234559059143066,3.994086620852917,6.041779041290283,-92.1479134183486,-92.67221830429766,-0.8269049612107217,-0.7662303462012485,29.467466354370117,27.499800244862847,28.318639755249023,-29.137908430121577,-32.03605512356809,-0.1969720621451531,-0.1598818752139111,0.7796916365623474,-0.5714750289916992,-0.4313467741012573,-0.866777777671814,-0.7679586410522461,0.6375339031219482,5.208919525146484
45
+ bd45_1;gsk4182136;s309;sotrovimab;vir_7831;xevudy,B,7r6w,0.3,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QVQLVQSGAEVKKPGASVKVSCKASGYPFTSYGISWVRQAPGQGLEWMGWISTYNGNTNYAQKFQGRVTMTTDTSTTTGYMELRRLRSDDTAVYYCARDYTRGAWFGESLIGGFDNWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQTVSSTSLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQHDTSLTFGGGTKVEIK,4.035280227661133,2.1879774658228124,3.214127779006958,-97.586294896018,-97.78692552902648,-0.9168130538466628,-0.8642742302730783,29.46262550354004,27.239163579335372,28.214332580566406,-28.111347070609728,-31.835693294296725,-0.197552429920012,-0.1626842231171148,0.7895846962928772,-0.5726590156555176,-0.433131068944931,-0.8786981105804443,-0.811526894569397,1.0025489330291748,10.086435317993164
46
+ 2h04,B,7k9j,133.5,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLQQSGAELVKPGASVKMSCKASGYTFTSYWITWVKQRPGQGLEWIGDIYPGSGSTKYNEKFRSEATLTVDTSSTTAYMQLSSLTSEDSAVYYCARWDFYGSRTFDYWGQGTTLTVSS,DIVLTQSPAILSVSPGERVSFSCRASQNIGTIIHWYQQRTNGSPRLLIKYASESVSGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQSSSWPLTFGAGTKLEL,5.5522050857543945,3.041350958815084,4.5895092487335205,-94.49311763338775,-91.39039245341203,-0.8817706878708991,-0.8164768411093322,29.418560028076172,27.98694058942123,28.17454433441162,-33.61158879530535,-34.574326230604456,-0.2508088107745393,-0.1547729554794146,0.7856423258781433,-0.571944534778595,-0.4345081448554992,-0.8734259009361267,-0.8325319290161133,0.6114388108253479,5.5772385597229
47
+ 47d11;abbv_47d11,B,7akd,114.4,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLQESGPGLVKPSETLSLTCSVSGGSISSHYWSWIRQPPGKGLEWIGYIYYSGSTNHNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGVLLWFGEPIFEIWGQGTMVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSVSSSLAWYQQKPGQAPRLLIYGASTRAPGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPLTFGGGTKVEI,5.490380764007568,3.2952370952349423,4.705025672912598,-92.1416111266067,-94.18903519337286,-0.8748528155487488,-0.8027736597968829,29.626730918884277,27.558930717370448,28.560216903686523,-28.805804275135554,-33.09713122769224,-0.1959079980613512,-0.1592528564459155,0.7533620595932007,-0.5864310264587402,-0.4550740718841553,-0.8279340267181396,-0.751384437084198,0.8081450462341309,7.574724197387695
48
+ bd45_51;cova1_16,B,7lm8,39.3,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINSSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARPPRNYYDRSGYYQRAEYFQHWGQGTLVTVSS,DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQRPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNPPLTFGGGTKLEIK,4.054622411727905,2.3062880757802025,3.3268402814865112,-97.4141787798708,-97.7504291827374,-0.9156229671016866,-0.8574841891806301,29.544042587280273,27.663066857468205,28.238636016845703,-29.922500266532385,-35.042157324403966,-0.2249247780000396,-0.1581510868209615,0.8197484016418457,-0.6141525506973267,-0.4896186590194702,-0.902280867099762,-0.8115324378013611,0.6478267312049866,5.265340805053711
49
+ 2_36;mab2_36;mab_2_36,B,7n5h,25.5,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,QVQLQESGPGLVKPSETLSLTCTVSGGSVSSSNYYWSWIRQPPGKGLEWIGYMYYSGSTKYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREVYYYDRSGYYASDGFDIWGQGTMVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPQTFGQGTKVEIK,5.51184606552124,3.4954805127935127,4.655013084411621,-91.56488723607376,-93.99126170903035,-0.8788724895280995,-0.792128197935659,29.45844554901123,27.190016831292045,27.64794158935547,-33.965713221432466,-38.14089769590593,-0.2509794897899634,-0.1632181239908253,0.8579543232917786,-0.7514504790306091,-0.6738511323928833,-0.9039801359176636,-0.8606258034706116,0.5185177326202393,2.2926836013793945
50
+ bd45_36;cr3022;cr3022_bloom,B,7lop,19.2,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,QMQLVQSGTEVKKPGESLKISCKGSGYGFITYWIGWVRQMPGKGLEWMGIIYPGDSETRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCAGGSGISTPMDVWGQGTTVTVSS,DIQLTQSPDSLAVSLGERATINCKSSQSVLYSSINKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPYTFGQGTKVEIK,3.785881757736206,2.1887367745598056,3.154212474822998,-97.31325329160802,-97.57536327952296,-0.9249923637997646,-0.8642304813154394,29.614891052246097,27.25495690388121,28.62714958190918,-26.76361146923883,-30.0443491733584,-0.1862765651335828,-0.1625130249435957,0.82429039478302,-0.6890798807144165,-0.5778682827949524,-0.885895848274231,-0.7914222478866577,0.5398352146148682,3.682659864425659
51
+ bd45_30;ey6a,B,7nx8,11.5,NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP,EVQLVESGGGVVQPGRSLRLSCAASAFTFSSYDMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGGKLWVYYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLALTFGGGTKVEIK,3.929850935935974,2.1863213407188695,3.1314921379089355,-97.51058894055473,-97.71229369662947,-0.9213583874991912,-0.8643696586243207,29.878454208374023,28.315772050135845,29.09880256652832,-28.7715268732945,-32.06879935855624,-0.1916635431145444,-0.1514169276635339,0.8350378274917603,-0.7006388902664185,-0.6028293371200562,-0.8930899500846863,-0.8327577114105225,0.6301888227462769,5.578433990478516
52
+ bd45_9;h014,B,7cwn,0.4,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,VQLVQSGAEVKKPGATVKISCKVSGYSFSNYYIHWVKQAPGKSLEWIGYIDPFNGGTSDNLKFKGAATLTADTSTDTAYMELSSLRSEDTAVYYCARSEYDPYYVMDYWGQGTTVTVSS,IVLTQSPFQSVSPKEKVTITCRASQSISSNLHWYQQKPDQSPKLLIKYASQSISGIPSRFSGSGSGTDFTLTINSLEAEDFGIYFCQQTNFWPYIFGQGTKLEIL,6.031911134719849,4.9439687633453815,5.354763031005859,-86.79975783130662,-90.51398378567076,-0.871041595425665,-0.7192128581655506,29.82300090789795,27.54247150507448,28.78650951385498,-29.727914321816193,-31.984040053501733,-0.1824768566146962,-0.1594276974580828,0.7948814630508423,-0.6780011653900146,-0.5725476145744324,-0.8504648804664612,-0.7923485040664673,0.6161614060401917,4.652228832244873
53
+ bd45_19;s2a4,B,7jvc,9.0,VRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMNWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLFLQMNSLRAEDTAVYYCARVWWLRGSFDYWGQGTLVTVSS,NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNHVVFGGGTKLTVL,4.43854284286499,2.843207806437586,3.9522820711135864,-94.91913347613088,-95.89177499223236,-0.9156193065210604,-0.827333676502878,29.44169044494629,27.38740351860855,27.531078338623047,-40.35470606697892,-44.12683806675659,-0.3018415175756866,-0.1610843881621995,0.79897540807724,-0.6072283387184143,-0.4732429385185241,-0.880408525466919,-0.8060691356658936,0.6705988049507141,5.717726707458496
54
+ bd45_14;s304,B,8hws,4.4,TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK,VQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQTTGKGLEWVSTIGTAGDTYYPDSVKGRFTISREDAKNSLYLQMNSLRAGDTAVYYCARGDSSGYYYYFDYWGQGTLLTVSS,DIEMTQSPSSLSAAVGDRVTITCRASQSIGSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQSYVSPTYTFGPGTKVDIK,4.787611484527588,2.8059083707912547,3.77287483215332,-94.91462018880014,-96.1300700923888,-0.9052554984532524,-0.829393508408732,29.710834503173828,28.24864526075121,28.94913673400879,-27.831625419639547,-29.99205705206104,-0.1656382480513416,-0.1520960549320848,0.9223516583442688,-0.9372462034225464,-0.9285171031951904,-0.9208102822303772,-0.899919331073761,0.3208865523338318,0.4858148396015167