fix AF2 models multimer prediction fetch
#20
by
AchilleSoulieID
- opened
- folding_studio_demo/app.py +13 -1
folding_studio_demo/app.py
CHANGED
@@ -341,6 +341,16 @@ def create_antibody_discovery_tab():
|
|
341 |
inputs=[prediction_dataframe],
|
342 |
outputs=[prediction_dataframe],
|
343 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
with gr.Row(visible=False) as correlation_row:
|
345 |
with gr.Column(scale=0):
|
346 |
with gr.Row():
|
@@ -366,7 +376,7 @@ def create_antibody_discovery_tab():
|
|
366 |
label="Score data to display",
|
367 |
choices=SCORE_COLUMNS,
|
368 |
multiselect=False,
|
369 |
-
value=
|
370 |
)
|
371 |
score_description = gr.Markdown(
|
372 |
get_score_description(correlation_column.value)
|
@@ -386,12 +396,14 @@ def create_antibody_discovery_tab():
|
|
386 |
),
|
387 |
gr.Row(visible=True),
|
388 |
gr.Row(visible=True),
|
|
|
389 |
),
|
390 |
inputs=[correlation_type],
|
391 |
outputs=[
|
392 |
prediction_dataframe,
|
393 |
correlation_ranking_plot,
|
394 |
regression_plot,
|
|
|
395 |
correlation_row,
|
396 |
regression_row,
|
397 |
],
|
|
|
341 |
inputs=[prediction_dataframe],
|
342 |
outputs=[prediction_dataframe],
|
343 |
)
|
344 |
+
with gr.Row(visible=False) as explanation_row:
|
345 |
+
gr.Markdown(
|
346 |
+
"""
|
347 |
+
We now have the predicted structures along with the models confidence scores of all complexes. Let's see if we can find a correlation
|
348 |
+
between the confidence scores and the binding affinity.
|
349 |
+
Spearman and Pearson are statistical methods commonly used to measure the correlation between
|
350 |
+
two variables. Higher values indicate a stronger correlation.
|
351 |
+
Here **Boltz Complex ipLDDT** is the best predictor of binding affinity.
|
352 |
+
""",
|
353 |
+
)
|
354 |
with gr.Row(visible=False) as correlation_row:
|
355 |
with gr.Column(scale=0):
|
356 |
with gr.Row():
|
|
|
376 |
label="Score data to display",
|
377 |
choices=SCORE_COLUMNS,
|
378 |
multiselect=False,
|
379 |
+
value="Boltz Complex ipLDDT",
|
380 |
)
|
381 |
score_description = gr.Markdown(
|
382 |
get_score_description(correlation_column.value)
|
|
|
396 |
),
|
397 |
gr.Row(visible=True),
|
398 |
gr.Row(visible=True),
|
399 |
+
gr.Row(visible=True)
|
400 |
),
|
401 |
inputs=[correlation_type],
|
402 |
outputs=[
|
403 |
prediction_dataframe,
|
404 |
correlation_ranking_plot,
|
405 |
regression_plot,
|
406 |
+
explanation_row,
|
407 |
correlation_row,
|
408 |
regression_row,
|
409 |
],
|