fix AF2 models multimer prediction fetch

#20
Files changed (1) hide show
  1. folding_studio_demo/app.py +13 -1
folding_studio_demo/app.py CHANGED
@@ -341,6 +341,16 @@ def create_antibody_discovery_tab():
341
  inputs=[prediction_dataframe],
342
  outputs=[prediction_dataframe],
343
  )
 
 
 
 
 
 
 
 
 
 
344
  with gr.Row(visible=False) as correlation_row:
345
  with gr.Column(scale=0):
346
  with gr.Row():
@@ -366,7 +376,7 @@ def create_antibody_discovery_tab():
366
  label="Score data to display",
367
  choices=SCORE_COLUMNS,
368
  multiselect=False,
369
- value=SCORE_COLUMNS[0],
370
  )
371
  score_description = gr.Markdown(
372
  get_score_description(correlation_column.value)
@@ -386,12 +396,14 @@ def create_antibody_discovery_tab():
386
  ),
387
  gr.Row(visible=True),
388
  gr.Row(visible=True),
 
389
  ),
390
  inputs=[correlation_type],
391
  outputs=[
392
  prediction_dataframe,
393
  correlation_ranking_plot,
394
  regression_plot,
 
395
  correlation_row,
396
  regression_row,
397
  ],
 
341
  inputs=[prediction_dataframe],
342
  outputs=[prediction_dataframe],
343
  )
344
+ with gr.Row(visible=False) as explanation_row:
345
+ gr.Markdown(
346
+ """
347
+ We now have the predicted structures along with the models confidence scores of all complexes. Let's see if we can find a correlation
348
+ between the confidence scores and the binding affinity.
349
+ Spearman and Pearson are statistical methods commonly used to measure the correlation between
350
+ two variables. Higher values indicate a stronger correlation.
351
+ Here **Boltz Complex ipLDDT** is the best predictor of binding affinity.
352
+ """,
353
+ )
354
  with gr.Row(visible=False) as correlation_row:
355
  with gr.Column(scale=0):
356
  with gr.Row():
 
376
  label="Score data to display",
377
  choices=SCORE_COLUMNS,
378
  multiselect=False,
379
+ value="Boltz Complex ipLDDT",
380
  )
381
  score_description = gr.Markdown(
382
  get_score_description(correlation_column.value)
 
396
  ),
397
  gr.Row(visible=True),
398
  gr.Row(visible=True),
399
+ gr.Row(visible=True)
400
  ),
401
  inputs=[correlation_type],
402
  outputs=[
403
  prediction_dataframe,
404
  correlation_ranking_plot,
405
  regression_plot,
406
+ explanation_row,
407
  correlation_row,
408
  regression_row,
409
  ],