Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append('../') | |
import spaces | |
import torch | |
import random | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from transformers import AutoModelForImageSegmentation | |
from torchvision import transforms | |
from pipeline import InstantCharacterFluxPipeline | |
# global variable | |
MAX_SEED = np.iinfo(np.int32).max | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
# pre-trained weights | |
ip_adapter_path = hf_hub_download(repo_id="tencent/InstantCharacter", filename="instantcharacter_ip-adapter.bin") | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
image_encoder_path = 'google/siglip-so400m-patch14-384' | |
image_encoder_2_path = 'facebook/dinov2-giant' | |
birefnet_path = 'ZhengPeng7/BiRefNet' | |
makoto_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Makoto-Shinkai", filename="Makoto_Shinkai_style.safetensors") | |
ghibli_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Ghibli", filename="ghibli_style.safetensors") | |
# init InstantCharacter pipeline | |
pipe = InstantCharacterFluxPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
pipe.to(device) | |
# load InstantCharacter | |
pipe.init_adapter( | |
image_encoder_path=image_encoder_path, | |
image_encoder_2_path=image_encoder_2_path, | |
subject_ipadapter_cfg=dict(subject_ip_adapter_path=ip_adapter_path, nb_token=1024), | |
) | |
# load matting model | |
birefnet = AutoModelForImageSegmentation.from_pretrained(birefnet_path, trust_remote_code=True) | |
birefnet.to('cuda') | |
birefnet.eval() | |
birefnet_transform_image = transforms.Compose([ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
def remove_bkg(subject_image): | |
def infer_matting(img_pil): | |
input_images = birefnet_transform_image(img_pil).unsqueeze(0).to('cuda') | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(img_pil.size) | |
mask = np.array(mask) | |
mask = mask[..., None] | |
return mask | |
def get_bbox_from_mask(mask, th=128): | |
height, width = mask.shape[:2] | |
x1, y1, x2, y2 = 0, 0, width - 1, height - 1 | |
sample = np.max(mask, axis=0) | |
for idx in range(width): | |
if sample[idx] >= th: | |
x1 = idx | |
break | |
sample = np.max(mask[:, ::-1], axis=0) | |
for idx in range(width): | |
if sample[idx] >= th: | |
x2 = width - 1 - idx | |
break | |
sample = np.max(mask, axis=1) | |
for idx in range(height): | |
if sample[idx] >= th: | |
y1 = idx | |
break | |
sample = np.max(mask[::-1], axis=1) | |
for idx in range(height): | |
if sample[idx] >= th: | |
y2 = height - 1 - idx | |
break | |
x1 = np.clip(x1, 0, width-1).round().astype(np.int32) | |
y1 = np.clip(y1, 0, height-1).round().astype(np.int32) | |
x2 = np.clip(x2, 0, width-1).round().astype(np.int32) | |
y2 = np.clip(y2, 0, height-1).round().astype(np.int32) | |
return [x1, y1, x2, y2] | |
def pad_to_square(image, pad_value = 255, random = False): | |
''' | |
image: np.array [h, w, 3] | |
''' | |
H,W = image.shape[0], image.shape[1] | |
if H == W: | |
return image | |
padd = abs(H - W) | |
if random: | |
padd_1 = int(np.random.randint(0,padd)) | |
else: | |
padd_1 = int(padd / 2) | |
padd_2 = padd - padd_1 | |
if H > W: | |
pad_param = ((0,0),(padd_1,padd_2),(0,0)) | |
else: | |
pad_param = ((padd_1,padd_2),(0,0),(0,0)) | |
image = np.pad(image, pad_param, 'constant', constant_values=pad_value) | |
return image | |
salient_object_mask = infer_matting(subject_image)[..., 0] | |
x1, y1, x2, y2 = get_bbox_from_mask(salient_object_mask) | |
subject_image = np.array(subject_image) | |
salient_object_mask[salient_object_mask > 128] = 255 | |
salient_object_mask[salient_object_mask < 128] = 0 | |
sample_mask = np.concatenate([salient_object_mask[..., None]]*3, axis=2) | |
obj_image = sample_mask / 255 * subject_image + (1 - sample_mask / 255) * 255 | |
crop_obj_image = obj_image[y1:y2, x1:x2] | |
crop_pad_obj_image = pad_to_square(crop_obj_image, 255) | |
subject_image = Image.fromarray(crop_pad_obj_image.astype(np.uint8)) | |
return subject_image | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def get_example(): | |
case = [ | |
[ | |
"./assets/girl.jpg", | |
"A girl is playing a guitar in street", | |
0.9, | |
'Makoto Shinkai style', | |
], | |
[ | |
"./assets/boy.jpg", | |
"A boy is riding a bike in snow", | |
0.9, | |
'Makoto Shinkai style', | |
], | |
] | |
return case | |
def run_for_examples(source_image, prompt, scale, style_mode): | |
return create_image( | |
input_image=source_image, | |
prompt=prompt, | |
scale=scale, | |
guidance_scale=3.5, | |
num_inference_steps=28, | |
seed=123456, | |
style_mode=style_mode, | |
) | |
def create_image(input_image, | |
prompt, | |
scale, | |
guidance_scale, | |
num_inference_steps, | |
seed, | |
style_mode=None): | |
input_image = remove_bkg(input_image) | |
if style_mode is None: | |
images = pipe( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
width=1024, | |
height=1024, | |
subject_image=input_image, | |
subject_scale=scale, | |
generator=torch.manual_seed(seed), | |
).images | |
else: | |
if style_mode == 'Makoto Shinkai style': | |
lora_file_path = makoto_style_lora_path | |
trigger = 'Makoto Shinkai style' | |
elif style_mode == 'Ghibli style': | |
lora_file_path = ghibli_style_lora_path | |
trigger = 'ghibli style' | |
images = pipe.with_style_lora( | |
lora_file_path=lora_file_path, | |
trigger=trigger, | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
width=1024, | |
height=1024, | |
subject_image=input_image, | |
subject_scale=scale, | |
generator=torch.manual_seed(seed), | |
).images | |
return images | |
# Description | |
title = r""" | |
<h1 align="center">InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework</h1> | |
""" | |
description = r""" | |
<b>Official π€ Gradio demo</b> for <a href='https://instantcharacter.github.io/' target='_blank'><b>InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework</b></a>.<br> | |
How to use:<br> | |
1. Upload a character image, removing background would be preferred. | |
2. Enter a text prompt to describe what you hope the chracter does. | |
3. Click the <b>Submit</b> button to begin customization. | |
4. Share your custimized photo with your friends and enjoy! π | |
""" | |
article = r""" | |
--- | |
π **Citation** | |
<br> | |
If our work is helpful for your research or applications, please cite us via: | |
```bibtex | |
@article{tao2025instantcharacter, | |
title={InstantCharacter: Personalize Any Characters with a Scalable Diffusion Transformer Framework}, | |
author={Tao, Jiale and Zhang, Yanbing and Wang, Qixun and Cheng, Yiji and Wang, Haofan and Bai, Xu and Zhou, Zhengguang and Li, Ruihuang and Wang, Linqing and Wang, Chunyu and others}, | |
journal={arXiv preprint arXiv:2504.12395}, | |
year={2025} | |
} | |
``` | |
π§ **Contact** | |
<br> | |
If you have any questions, please feel free to open an issue. | |
""" | |
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False) | |
with block: | |
# description | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
image_pil = gr.Image(label="Source Image", type='pil') | |
prompt = gr.Textbox(label="Prompt", value="a character is riding a bike in snow") | |
scale = gr.Slider(minimum=0, maximum=1.5, step=0.01,value=1.0, label="Scale") | |
style_mode = gr.Dropdown(label='Style', choices=[None, 'Makoto Shinkai style', 'Ghibli style'], value='Makoto Shinkai style') | |
with gr.Accordion(open=False, label="Advanced Options"): | |
guidance_scale = gr.Slider(minimum=1,maximum=7.0, step=0.01,value=3.5, label="guidance scale") | |
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=28, label="num inference steps") | |
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=123456, step=1, label="Seed Value") | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
generate_button = gr.Button("Generate Image") | |
with gr.Column(): | |
generated_image = gr.Gallery(label="Generated Image") | |
generate_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=create_image, | |
inputs=[image_pil, | |
prompt, | |
scale, | |
guidance_scale, | |
num_inference_steps, | |
seed, | |
style_mode, | |
], | |
outputs=[generated_image]) | |
gr.Examples( | |
examples=get_example(), | |
inputs=[image_pil, prompt, scale, style_mode], | |
fn=run_for_examples, | |
outputs=[generated_image], | |
cache_examples=True, | |
) | |
gr.Markdown(article) | |
block.launch() |