Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
import torch | |
import math | |
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock | |
from diffusers.models.embeddings import Timesteps, TimestepEmbedding | |
from timm.models.vision_transformer import Mlp | |
from .norm_layer import RMSNorm | |
# FFN | |
def FeedForward(dim, mult=4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias=False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias=False), | |
) | |
def reshape_tensor(x, heads): | |
bs, length, width = x.shape | |
#(bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
x = x.view(bs, length, heads, -1) | |
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
x = x.transpose(1, 2) | |
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) | |
x = x.reshape(bs, heads, length, -1) | |
return x | |
class PerceiverAttention(nn.Module): | |
def __init__(self, *, dim, dim_head=64, heads=8): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents, shift=None, scale=None): | |
""" | |
Args: | |
x (torch.Tensor): image features | |
shape (b, n1, D) | |
latent (torch.Tensor): latent features | |
shape (b, n2, D) | |
""" | |
x = self.norm1(x) | |
latents = self.norm2(latents) | |
if shift is not None and scale is not None: | |
latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
b, l, _ = latents.shape | |
q = self.to_q(latents) | |
kv_input = torch.cat((x, latents), dim=-2) | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
q = reshape_tensor(q, self.heads) | |
k = reshape_tensor(k, self.heads) | |
v = reshape_tensor(v, self.heads) | |
# attention | |
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
out = weight @ v | |
out = out.permute(0, 2, 1, 3).reshape(b, l, -1) | |
return self.to_out(out) | |
class ReshapeExpandToken(nn.Module): | |
def __init__(self, expand_token, token_dim): | |
super().__init__() | |
self.expand_token = expand_token | |
self.token_dim = token_dim | |
def forward(self, x): | |
x = x.reshape(-1, self.expand_token, self.token_dim) | |
return x | |
class TimeResampler(nn.Module): | |
def __init__( | |
self, | |
dim=1024, | |
depth=8, | |
dim_head=64, | |
heads=16, | |
num_queries=8, | |
embedding_dim=768, | |
output_dim=1024, | |
ff_mult=4, | |
timestep_in_dim=320, | |
timestep_flip_sin_to_cos=True, | |
timestep_freq_shift=0, | |
expand_token=None, | |
extra_dim=None, | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
self.expand_token = expand_token is not None | |
if expand_token: | |
self.expand_proj = torch.nn.Sequential( | |
torch.nn.Linear(embedding_dim, embedding_dim * 2), | |
torch.nn.GELU(), | |
torch.nn.Linear(embedding_dim * 2, embedding_dim * expand_token), | |
ReshapeExpandToken(expand_token, embedding_dim), | |
RMSNorm(embedding_dim, eps=1e-8), | |
) | |
self.proj_in = nn.Linear(embedding_dim, dim) | |
self.extra_feature = extra_dim is not None | |
if self.extra_feature: | |
self.proj_in_norm = RMSNorm(dim, eps=1e-8) | |
self.extra_proj_in = torch.nn.Sequential( | |
nn.Linear(extra_dim, dim), | |
RMSNorm(dim, eps=1e-8), | |
) | |
self.proj_out = nn.Linear(dim, output_dim) | |
self.norm_out = nn.LayerNorm(output_dim) | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList( | |
[ | |
# msa | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
# ff | |
FeedForward(dim=dim, mult=ff_mult), | |
# adaLN | |
nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True)) | |
] | |
) | |
) | |
# time | |
self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift) | |
self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu") | |
def forward(self, x, timestep, need_temb=False, extra_feature=None): | |
timestep_emb = self.embedding_time(x, timestep) # bs, dim | |
latents = self.latents.repeat(x.size(0), 1, 1) | |
if self.expand_token: | |
x = self.expand_proj(x) | |
x = self.proj_in(x) | |
if self.extra_feature: | |
extra_feature = self.extra_proj_in(extra_feature) | |
x = self.proj_in_norm(x) | |
x = torch.cat([x, extra_feature], dim=1) | |
x = x + timestep_emb[:, None] | |
for attn, ff, adaLN_modulation in self.layers: | |
shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1) | |
latents = attn(x, latents, shift_msa, scale_msa) + latents | |
res = latents | |
for idx_ff in range(len(ff)): | |
layer_ff = ff[idx_ff] | |
latents = layer_ff(latents) | |
if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm): # adaLN | |
latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) | |
latents = latents + res | |
# latents = ff(latents) + latents | |
latents = self.proj_out(latents) | |
latents = self.norm_out(latents) | |
if need_temb: | |
return latents, timestep_emb | |
else: | |
return latents | |
def embedding_time(self, sample, timestep): | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, None) | |
return emb | |
class CrossLayerCrossScaleProjector(nn.Module): | |
def __init__( | |
self, | |
inner_dim=2688, | |
num_attention_heads=42, | |
attention_head_dim=64, | |
cross_attention_dim=2688, | |
num_layers=4, | |
# resampler | |
dim=1280, | |
depth=4, | |
dim_head=64, | |
heads=20, | |
num_queries=1024, | |
embedding_dim=1152 + 1536, | |
output_dim=4096, | |
ff_mult=4, | |
timestep_in_dim=320, | |
timestep_flip_sin_to_cos=True, | |
timestep_freq_shift=0, | |
): | |
super().__init__() | |
self.cross_layer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=0, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn="geglu", | |
num_embeds_ada_norm=None, | |
attention_bias=False, | |
only_cross_attention=False, | |
double_self_attention=False, | |
upcast_attention=False, | |
norm_type='layer_norm', | |
norm_elementwise_affine=True, | |
norm_eps=1e-6, | |
attention_type="default", | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.cross_scale_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=0, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn="geglu", | |
num_embeds_ada_norm=None, | |
attention_bias=False, | |
only_cross_attention=False, | |
double_self_attention=False, | |
upcast_attention=False, | |
norm_type='layer_norm', | |
norm_elementwise_affine=True, | |
norm_eps=1e-6, | |
attention_type="default", | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.proj = Mlp( | |
in_features=inner_dim, | |
hidden_features=int(inner_dim*2), | |
act_layer=lambda: nn.GELU(approximate="tanh"), | |
drop=0 | |
) | |
self.proj_cross_layer = Mlp( | |
in_features=inner_dim, | |
hidden_features=int(inner_dim*2), | |
act_layer=lambda: nn.GELU(approximate="tanh"), | |
drop=0 | |
) | |
self.proj_cross_scale = Mlp( | |
in_features=inner_dim, | |
hidden_features=int(inner_dim*2), | |
act_layer=lambda: nn.GELU(approximate="tanh"), | |
drop=0 | |
) | |
self.resampler = TimeResampler( | |
dim=dim, | |
depth=depth, | |
dim_head=dim_head, | |
heads=heads, | |
num_queries=num_queries, | |
embedding_dim=embedding_dim, | |
output_dim=output_dim, | |
ff_mult=ff_mult, | |
timestep_in_dim=timestep_in_dim, | |
timestep_flip_sin_to_cos=timestep_flip_sin_to_cos, | |
timestep_freq_shift=timestep_freq_shift, | |
) | |
def forward(self, low_res_shallow, low_res_deep, high_res_deep, timesteps, cross_attention_kwargs=None, need_temb=True): | |
''' | |
low_res_shallow [bs, 729*l, c] | |
low_res_deep [bs, 729, c] | |
high_res_deep [bs, 729*4, c] | |
''' | |
cross_layer_hidden_states = low_res_deep | |
for block in self.cross_layer_blocks: | |
cross_layer_hidden_states = block( | |
cross_layer_hidden_states, | |
encoder_hidden_states=low_res_shallow, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
cross_layer_hidden_states = self.proj_cross_layer(cross_layer_hidden_states) | |
cross_scale_hidden_states = low_res_deep | |
for block in self.cross_scale_blocks: | |
cross_scale_hidden_states = block( | |
cross_scale_hidden_states, | |
encoder_hidden_states=high_res_deep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
cross_scale_hidden_states = self.proj_cross_scale(cross_scale_hidden_states) | |
hidden_states = self.proj(low_res_deep) + cross_scale_hidden_states | |
hidden_states = torch.cat([hidden_states, cross_layer_hidden_states], dim=1) | |
hidden_states, timestep_emb = self.resampler(hidden_states, timesteps, need_temb=True) | |
return hidden_states, timestep_emb | |