InstantCharacter / pipeline.py
wangqixun's picture
Update pipeline.py
30a77c4 verified
# Copyright 2025 Tencent InstantX Team. All rights reserved.
#
from PIL import Image
from einops import rearrange
import torch
from diffusers.pipelines.flux.pipeline_flux import *
from transformers import SiglipVisionModel, SiglipImageProcessor, AutoModel, AutoImageProcessor
from models.attn_processor import FluxIPAttnProcessor
from models.resampler import CrossLayerCrossScaleProjector
from models.utils import flux_load_lora
# TODO
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import FluxPipeline
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
>>> image.save("flux.png")
```
"""
class InstantCharacterFluxPipeline(FluxPipeline):
@torch.no_grad()
def encode_siglip_image_emb(self, siglip_image, device, dtype):
siglip_image = siglip_image.to(device, dtype=dtype)
res = self.siglip_image_encoder(siglip_image, output_hidden_states=True)
siglip_image_embeds = res.last_hidden_state
siglip_image_shallow_embeds = torch.cat([res.hidden_states[i] for i in [7, 13, 26]], dim=1)
return siglip_image_embeds, siglip_image_shallow_embeds
@torch.no_grad()
def encode_dinov2_image_emb(self, dinov2_image, device, dtype):
dinov2_image = dinov2_image.to(device, dtype=dtype)
res = self.dino_image_encoder_2(dinov2_image, output_hidden_states=True)
dinov2_image_embeds = res.last_hidden_state[:, 1:]
dinov2_image_shallow_embeds = torch.cat([res.hidden_states[i][:, 1:] for i in [9, 19, 29]], dim=1)
return dinov2_image_embeds, dinov2_image_shallow_embeds
@torch.no_grad()
def encode_image_emb(self, siglip_image, device, dtype):
object_image_pil = siglip_image
object_image_pil_low_res = [object_image_pil.resize((384, 384))]
object_image_pil_high_res = object_image_pil.resize((768, 768))
object_image_pil_high_res = [
object_image_pil_high_res.crop((0, 0, 384, 384)),
object_image_pil_high_res.crop((384, 0, 768, 384)),
object_image_pil_high_res.crop((0, 384, 384, 768)),
object_image_pil_high_res.crop((384, 384, 768, 768)),
]
nb_split_image = len(object_image_pil_high_res)
siglip_image_embeds = self.encode_siglip_image_emb(
self.siglip_image_processor(images=object_image_pil_low_res, return_tensors="pt").pixel_values,
device,
dtype
)
dinov2_image_embeds = self.encode_dinov2_image_emb(
self.dino_image_processor_2(images=object_image_pil_low_res, return_tensors="pt").pixel_values,
device,
dtype
)
image_embeds_low_res_deep = torch.cat([siglip_image_embeds[0], dinov2_image_embeds[0]], dim=2)
image_embeds_low_res_shallow = torch.cat([siglip_image_embeds[1], dinov2_image_embeds[1]], dim=2)
siglip_image_high_res = self.siglip_image_processor(images=object_image_pil_high_res, return_tensors="pt").pixel_values
siglip_image_high_res = siglip_image_high_res[None]
siglip_image_high_res = rearrange(siglip_image_high_res, 'b n c h w -> (b n) c h w')
siglip_image_high_res_embeds = self.encode_siglip_image_emb(siglip_image_high_res, device, dtype)
siglip_image_high_res_deep = rearrange(siglip_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image)
dinov2_image_high_res = self.dino_image_processor_2(images=object_image_pil_high_res, return_tensors="pt").pixel_values
dinov2_image_high_res = dinov2_image_high_res[None]
dinov2_image_high_res = rearrange(dinov2_image_high_res, 'b n c h w -> (b n) c h w')
dinov2_image_high_res_embeds = self.encode_dinov2_image_emb(dinov2_image_high_res, device, dtype)
dinov2_image_high_res_deep = rearrange(dinov2_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image)
image_embeds_high_res_deep = torch.cat([siglip_image_high_res_deep, dinov2_image_high_res_deep], dim=2)
image_embeds_dict = dict(
image_embeds_low_res_shallow=image_embeds_low_res_shallow,
image_embeds_low_res_deep=image_embeds_low_res_deep,
image_embeds_high_res_deep=image_embeds_high_res_deep,
)
return image_embeds_dict
@torch.no_grad()
def init_ccp_and_attn_processor(self, *args, **kwargs):
subject_ip_adapter_path = kwargs['subject_ip_adapter_path']
nb_token = kwargs['nb_token']
state_dict = torch.load(subject_ip_adapter_path, map_location="cpu")
device, dtype = self.transformer.device, self.transformer.dtype
print(f"=> init attn processor")
attn_procs = {}
for idx_attn, (name, v) in enumerate(self.transformer.attn_processors.items()):
attn_procs[name] = FluxIPAttnProcessor(
hidden_size=self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads,
ip_hidden_states_dim=self.text_encoder_2.config.d_model,
).to(device, dtype=dtype)
self.transformer.set_attn_processor(attn_procs)
tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values())
key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
print(f"=> load attn processor: {key_name}")
print(f"=> init project")
image_proj_model = CrossLayerCrossScaleProjector(
inner_dim=1152 + 1536,
num_attention_heads=42,
attention_head_dim=64,
cross_attention_dim=1152 + 1536,
num_layers=4,
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=nb_token,
embedding_dim=1152 + 1536,
output_dim=4096,
ff_mult=4,
timestep_in_dim=320,
timestep_flip_sin_to_cos=True,
timestep_freq_shift=0,
)
image_proj_model.eval()
image_proj_model.to(device, dtype=dtype)
key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False)
print(f"=> load project: {key_name}")
self.subject_image_proj_model = image_proj_model
@torch.no_grad()
def init_adapter(
self,
image_encoder_path=None,
image_encoder_2_path=None,
subject_ipadapter_cfg=None,
):
device, dtype = self.transformer.device, self.transformer.dtype
# image encoder
print(f"=> loading image_encoder_1: {image_encoder_path}")
image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path)
image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path)
image_encoder.eval()
image_encoder.to(device, dtype=dtype)
self.siglip_image_encoder = image_encoder
self.siglip_image_processor = image_processor
# image encoder 2
print(f"=> loading image_encoder_2: {image_encoder_2_path}")
image_encoder_2 = AutoModel.from_pretrained(image_encoder_2_path)
image_processor_2 = AutoImageProcessor.from_pretrained(image_encoder_2_path)
image_encoder_2.eval()
image_encoder_2.to(device, dtype=dtype)
image_processor_2.crop_size = dict(height=384, width=384)
image_processor_2.size = dict(shortest_edge=384)
self.dino_image_encoder_2 = image_encoder_2
self.dino_image_processor_2 = image_processor_2
# ccp and adapter
self.init_ccp_and_attn_processor(**subject_ipadapter_cfg)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt: Union[str, List[str]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
true_cfg_scale: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
subject_image: Image.Image = None,
subject_scale: float = 0.8,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
negative_ip_adapter_image:
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
dtype = self.transformer.dtype
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if do_true_cfg:
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
_,
) = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 3.1 Prepare subject emb
if subject_image is not None:
subject_image = subject_image.resize((max(subject_image.size), max(subject_image.size)))
subject_image_embeds_dict = self.encode_image_emb(subject_image, device, dtype)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
):
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
):
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
if self.joint_attention_kwargs is None:
self._joint_attention_kwargs = {}
image_embeds = None
negative_image_embeds = None
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
negative_ip_adapter_image,
negative_ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
# subject adapter
if subject_image is not None:
subject_image_prompt_embeds = self.subject_image_proj_model(
low_res_shallow=subject_image_embeds_dict['image_embeds_low_res_shallow'],
low_res_deep=subject_image_embeds_dict['image_embeds_low_res_deep'],
high_res_deep=subject_image_embeds_dict['image_embeds_high_res_deep'],
timesteps=timestep.to(dtype=latents.dtype),
need_temb=True
)[0]
self._joint_attention_kwargs['emb_dict'] = dict(
length_encoder_hidden_states=prompt_embeds.shape[1]
)
self._joint_attention_kwargs['subject_emb_dict'] = dict(
ip_hidden_states=subject_image_prompt_embeds,
scale=subject_scale,
)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
if do_true_cfg:
if negative_image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
neg_noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def with_style_lora(self, lora_file_path, lora_weight=1.0, trigger='', *args, **kwargs):
flux_load_lora(self, lora_file_path, lora_weight)
kwargs['prompt'] = f"{trigger}, {kwargs['prompt']}"
res = self.__call__(*args, **kwargs)
flux_load_lora(self, lora_file_path, -lora_weight)
return res