Spaces:
Running
Running
File size: 6,428 Bytes
c456f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import streamlit as st
import torch
import os
import torchvision
from annoy import AnnoyIndex
from PIL import Image
import traceback
from tqdm import tqdm
from PIL import ImageFile
from slugify import slugify
import opendatasets as od
import json
ImageFile.LOAD_TRUNCATED_IMAGES = True
FOLDER = "images/"
NUM_TREES = 100
FEATURES = 1000
@st.cache_resource
def load_dataset():
with open("kaggle.json", "w+") as f:
json.dump(
{
"username": st.secrets["username"],
"key": st.secrets["key"],
},
f,
)
od.download(
"https://www.kaggle.com/datasets/kkhandekar/image-dataset",
"images/",
)
# Load a pre-trained image feature extractor model
@st.cache_resource
def load_model():
"""Loads a pre-trained image feature extractor model."""
model = torch.hub.load(
"NVIDIA/DeepLearningExamples:torchhub",
"nvidia_efficientnet_b0",
pretrained=True,
)
model.eval() # Set model to evaluation mode
return model
# Get all file paths within a folder and its subfolders
@st.cache_data
def get_all_file_paths(folder_path):
"""Returns a list of all file paths within a folder and its subfolders."""
file_paths = []
for root, _, files in os.walk(folder_path):
for file in files:
if not file.lower().endswith(
(".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")
):
continue
file_path = os.path.join(root, file)
file_paths.append(file_path)
return file_paths
# Load all the images from file paths
@st.cache_data
def load_images(file_paths):
"""Load all the images from file paths."""
print("Loading images: ")
images = list()
for path in tqdm(file_paths):
try:
images.append(Image.open(path).resize([224, 224]))
except BaseException as e:
print("error loading ", path, e)
return images
# Function to preprocess images
def preprocess_image(image):
"""Preprocesses an image for feature extraction."""
if image.mode == "RGB": # Already has 3 channels
pass # No need to modify
elif image.mode == "L": # Grayscale image
image = image.convert("RGB") # Convert to 3-channel RGB
else: # Image has more than 3 channels
image = image.convert(
"RGB"
) # Convert to 3-channel RGB, discarding extra channels
preprocess = torchvision.transforms.Compose(
[
# torchvision.transforms.Resize(224), # Adjust for EfficientNet input size
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
return preprocess(image)
# Extract features from a list of images
def extract_features(images, model):
"""Extracts features from a list of images."""
print("Extracting features:")
features = []
for image in images:
with torch.no_grad():
feature = model(preprocess_image(image).unsqueeze(0)).squeeze(0)
features.append(feature.numpy())
return features
# Build an Annoy index for efficient similarity search
def build_annoy_index(features):
"""Builds an Annoy index for efficient similarity search."""
print("Building annoy index:")
f = features[0].shape[0] # Feature dimensionality
t = AnnoyIndex(f, "angular") # Use angular distance for image features
for i, feature in tqdm(enumerate(features)):
t.add_item(i, feature)
t.build(NUM_TREES) # Adjust num_trees for accuracy vs. speed trade-off
return t
# Perform reverse image search
def search_similar_images(uploaded_file, f=FEATURES, num_results=5):
"""Finds similar images based on a query image feature."""
index = AnnoyIndex(f, "angular")
index.load(f"{slugify(FOLDER)}.tree")
query_image = Image.open(uploaded_file)
model = load_model()
# Extract features and search
query_feature = (
model(preprocess_image(query_image).unsqueeze(0)).squeeze(0).detach().numpy()
)
nearest_neighbors, distances = index.get_nns_by_vector(
query_feature, num_results, include_distances=True
)
return query_image, nearest_neighbors, distances
@st.cache_data
def save_embedding(folder=FOLDER):
if os.path.isfile(f"{slugify(FOLDER)}.tree"):
return
model = load_model() # Load the model once
file_paths = get_all_file_paths(folder_path=folder)
images = load_images(file_paths)
features = extract_features(images, model)
index = build_annoy_index(features)
index.save(f"{slugify(FOLDER)}.tree")
def display_image(idx, dist):
file_paths = get_all_file_paths(folder_path=FOLDER)
image = Image.open(file_paths[idx])
st.image(image.resize([256, 256]))
st.markdown("SimScore: -" + str(round(dist, 2)))
# st.markdown(file_paths[idx])
if __name__ == "__main__":
# Main app logic
st.set_page_config(layout="wide")
st.title("Reverse Image Search App")
try:
load_dataset()
save_embedding(FOLDER)
# File uploader
uploaded_file = st.file_uploader(
"Choose an image like a car, cat, dog, flower, fruits, bike, aeroplane, person"
)
n_matches = st.slider(
"Num of matches to be displayed", min_value=3, max_value=100, value=5
)
if uploaded_file is not None:
query_image, nearest_neighbors, distances = search_similar_images(
uploaded_file, num_results=n_matches
)
st.image(query_image.resize([256, 256]), caption="Query Image", width=200)
st.subheader("Similar Images:")
cols = st.columns([1] * 5)
for i, (idx, dist) in enumerate(
zip(
*[
nearest_neighbors,
distances,
]
)
):
with cols[i % 5]:
# Display results
display_image(idx, dist)
else:
st.write("Please upload an image to start searching.")
except Exception as e:
traceback.print_exc()
print(e)
st.error("An error occurred: {}".format(e))
|