Spaces:
Sleeping
Sleeping
File size: 8,683 Bytes
c124df1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import re
import inspect
import requests
import pandas as pd
import yfinance as yf
import concurrent.futures
from typing import List
from bs4 import BeautifulSoup
from utils import inference_logger
from langchain.tools import tool
from langchain_core.utils.function_calling import convert_to_openai_tool
@tool
def google_search_and_scrape(query: str) -> dict:
"""
Performs a Google search for the given query, retrieves the top search result URLs,
and scrapes the text content and table data from those pages in parallel.
Args:
query (str): The search query.
Returns:
list: A list of dictionaries containing the URL, text content, and table data for each scraped page.
"""
num_results = 2
url = 'https://www.google.com/search'
params = {'q': query, 'num': num_results}
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.3'}
inference_logger.info(f"Performing google search with query: {query}\nplease wait...")
response = requests.get(url, params=params, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
urls = [result.find('a')['href'] for result in soup.find_all('div', class_='tF2Cxc')]
inference_logger.info(f"Scraping text from urls, please wait...")
[inference_logger.info(url) for url in urls]
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(lambda url: (url, requests.get(url, headers=headers).text if isinstance(url, str) else None), url) for url in urls[:num_results] if isinstance(url, str)]
results = []
for future in concurrent.futures.as_completed(futures):
url, html = future.result()
soup = BeautifulSoup(html, 'html.parser')
paragraphs = [p.text.strip() for p in soup.find_all('p') if p.text.strip()]
text_content = ' '.join(paragraphs)
text_content = re.sub(r'\s+', ' ', text_content)
table_data = [[cell.get_text(strip=True) for cell in row.find_all('td')] for table in soup.find_all('table') for row in table.find_all('tr')]
if text_content or table_data:
results.append({'url': url, 'content': text_content, 'tables': table_data})
return results
@tool
def get_current_stock_price(symbol: str) -> float:
"""
Get the current stock price for a given symbol.
Args:
symbol (str): The stock symbol.
Returns:
float: The current stock price, or None if an error occurs.
"""
try:
stock = yf.Ticker(symbol)
# Use "regularMarketPrice" for regular market hours, or "currentPrice" for pre/post market
current_price = stock.info.get("regularMarketPrice", stock.info.get("currentPrice"))
return current_price if current_price else None
except Exception as e:
print(f"Error fetching current price for {symbol}: {e}")
return None
@tool
def get_stock_fundamentals(symbol: str) -> dict:
"""
Get fundamental data for a given stock symbol using yfinance API.
Args:
symbol (str): The stock symbol.
Returns:
dict: A dictionary containing fundamental data.
Keys:
- 'symbol': The stock symbol.
- 'company_name': The long name of the company.
- 'sector': The sector to which the company belongs.
- 'industry': The industry to which the company belongs.
- 'market_cap': The market capitalization of the company.
- 'pe_ratio': The forward price-to-earnings ratio.
- 'pb_ratio': The price-to-book ratio.
- 'dividend_yield': The dividend yield.
- 'eps': The trailing earnings per share.
- 'beta': The beta value of the stock.
- '52_week_high': The 52-week high price of the stock.
- '52_week_low': The 52-week low price of the stock.
"""
try:
stock = yf.Ticker(symbol)
info = stock.info
fundamentals = {
'symbol': symbol,
'company_name': info.get('longName', ''),
'sector': info.get('sector', ''),
'industry': info.get('industry', ''),
'market_cap': info.get('marketCap', None),
'pe_ratio': info.get('forwardPE', None),
'pb_ratio': info.get('priceToBook', None),
'dividend_yield': info.get('dividendYield', None),
'eps': info.get('trailingEps', None),
'beta': info.get('beta', None),
'52_week_high': info.get('fiftyTwoWeekHigh', None),
'52_week_low': info.get('fiftyTwoWeekLow', None)
}
return fundamentals
except Exception as e:
print(f"Error getting fundamentals for {symbol}: {e}")
return {}
@tool
def get_financial_statements(symbol: str) -> dict:
"""
Get financial statements for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
dict: Dictionary containing financial statements (income statement, balance sheet, cash flow statement).
"""
try:
stock = yf.Ticker(symbol)
financials = stock.financials
return financials
except Exception as e:
print(f"Error fetching financial statements for {symbol}: {e}")
return {}
@tool
def get_key_financial_ratios(symbol: str) -> dict:
"""
Get key financial ratios for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
dict: Dictionary containing key financial ratios.
"""
try:
stock = yf.Ticker(symbol)
key_ratios = stock.info
return key_ratios
except Exception as e:
print(f"Error fetching key financial ratios for {symbol}: {e}")
return {}
@tool
def get_analyst_recommendations(symbol: str) -> pd.DataFrame:
"""
Get analyst recommendations for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
pd.DataFrame: DataFrame containing analyst recommendations.
"""
try:
stock = yf.Ticker(symbol)
recommendations = stock.recommendations
return recommendations
except Exception as e:
print(f"Error fetching analyst recommendations for {symbol}: {e}")
return pd.DataFrame()
@tool
def get_dividend_data(symbol: str) -> pd.DataFrame:
"""
Get dividend data for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
pd.DataFrame: DataFrame containing dividend data.
"""
try:
stock = yf.Ticker(symbol)
dividends = stock.dividends
return dividends
except Exception as e:
print(f"Error fetching dividend data for {symbol}: {e}")
return pd.DataFrame()
@tool
def get_company_news(symbol: str) -> pd.DataFrame:
"""
Get company news and press releases for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
pd.DataFrame: DataFrame containing company news and press releases.
"""
try:
news = yf.Ticker(symbol).news
return news
except Exception as e:
print(f"Error fetching company news for {symbol}: {e}")
return pd.DataFrame()
@tool
def get_technical_indicators(symbol: str) -> pd.DataFrame:
"""
Get technical indicators for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
pd.DataFrame: DataFrame containing technical indicators.
"""
try:
indicators = yf.Ticker(symbol).history(period="max")
return indicators
except Exception as e:
print(f"Error fetching technical indicators for {symbol}: {e}")
return pd.DataFrame()
@tool
def get_company_profile(symbol: str) -> dict:
"""
Get company profile and overview for a given stock symbol.
Args:
symbol (str): The stock symbol.
Returns:
dict: Dictionary containing company profile and overview.
"""
try:
profile = yf.Ticker(symbol).info
return profile
except Exception as e:
print(f"Error fetching company profile for {symbol}: {e}")
return {}
def get_openai_tools() -> List[dict]:
functions = [
google_search_and_scrape,
get_current_stock_price,
get_company_news,
get_company_profile,
get_stock_fundamentals,
get_financial_statements,
get_key_financial_ratios,
get_analyst_recommendations,
get_dividend_data,
get_technical_indicators
]
tools = [convert_to_openai_tool(f) for f in functions]
return tools
|