Spaces:
Sleeping
Sleeping
WilliamGazeley
commited on
Commit
·
c124df1
1
Parent(s):
0583c4b
Initial untested rag code
Browse files- .gitignore +7 -0
- app.py +17 -17
- config.py +13 -0
- functioncall.py +163 -0
- functions.py +314 -0
- prompt_assets/few_shot.json +8 -0
- prompt_assets/sys_prompt.yml +43 -0
- prompter.py +76 -0
- schema.py +23 -0
- utils.py +149 -0
- validator.py +132 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
|
3 |
+
# Python
|
4 |
+
__pycache__/
|
5 |
+
|
6 |
+
# vLLM
|
7 |
+
inference_logs/
|
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import os
|
2 |
import huggingface_hub
|
3 |
import streamlit as st
|
|
|
4 |
from vllm import LLM, SamplingParams
|
|
|
5 |
|
6 |
sys_msg = """You are an expert financial advisor named IRAI. You have a comprehensive understanding of finance and investing with experience and expertise in all areas of finance.
|
7 |
#Objective:
|
8 |
Answer questions accurately and truthfully given your current knowledge. You do not have access to up-to-date current market data; this will be available in the future. Answer the question directly.
|
9 |
-
Style and tone:
|
10 |
Answer in a friendly and engaging manner representing a top female investment professional working at a leading investment bank.
|
11 |
#Audience:
|
12 |
The questions will be asked by top technology executives and CFO of large fintech companies and successful startups.
|
@@ -15,24 +17,18 @@ Direct answer to question, concise yet insightful."""
|
|
15 |
|
16 |
@st.cache_resource(show_spinner="Loading model..")
|
17 |
def init_llm():
|
18 |
-
huggingface_hub.login(token=os.getenv("HF_TOKEN"))
|
19 |
-
llm =
|
20 |
-
tok = llm.get_tokenizer()
|
21 |
-
tok.eos_token = '<|im_end|>' # Override to use turns
|
22 |
return llm
|
23 |
|
24 |
def get_response(prompt):
|
25 |
try:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
sampling_params = SamplingParams(temperature=0.3, top_p=0.95, max_tokens=500, stop_token_ids=[128009])
|
33 |
-
outputs = llm.generate(prompts, sampling_params)
|
34 |
-
for output in outputs:
|
35 |
-
return output.outputs[0].text
|
36 |
except Exception as e:
|
37 |
return f"An error occurred: {str(e)}"
|
38 |
|
@@ -52,6 +48,10 @@ def main():
|
|
52 |
|
53 |
llm = init_llm()
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
|
|
|
|
|
1 |
import os
|
2 |
import huggingface_hub
|
3 |
import streamlit as st
|
4 |
+
from config import config
|
5 |
from vllm import LLM, SamplingParams
|
6 |
+
from functioncall import ModelInference
|
7 |
|
8 |
sys_msg = """You are an expert financial advisor named IRAI. You have a comprehensive understanding of finance and investing with experience and expertise in all areas of finance.
|
9 |
#Objective:
|
10 |
Answer questions accurately and truthfully given your current knowledge. You do not have access to up-to-date current market data; this will be available in the future. Answer the question directly.
|
11 |
+
#Style and tone:
|
12 |
Answer in a friendly and engaging manner representing a top female investment professional working at a leading investment bank.
|
13 |
#Audience:
|
14 |
The questions will be asked by top technology executives and CFO of large fintech companies and successful startups.
|
|
|
17 |
|
18 |
@st.cache_resource(show_spinner="Loading model..")
|
19 |
def init_llm():
|
20 |
+
huggingface_hub.login(token=os.getenv("HF_TOKEN"), new_session=False)
|
21 |
+
llm = ModelInference(chat_template='chatml')
|
|
|
|
|
22 |
return llm
|
23 |
|
24 |
def get_response(prompt):
|
25 |
try:
|
26 |
+
return llm.generate_function_call(
|
27 |
+
prompt,
|
28 |
+
config.chat_template,
|
29 |
+
config.num_fewshot,
|
30 |
+
config.max_depth
|
31 |
+
)
|
|
|
|
|
|
|
|
|
32 |
except Exception as e:
|
33 |
return f"An error occurred: {str(e)}"
|
34 |
|
|
|
48 |
|
49 |
llm = init_llm()
|
50 |
|
51 |
+
def main_headless():
|
52 |
+
while True:
|
53 |
+
input_text = input("Enter your text here: ")
|
54 |
+
print(get_response(input_text))
|
55 |
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main_headless()
|
config.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import Field
|
2 |
+
from pydantic_settings import BaseSettings
|
3 |
+
|
4 |
+
class Config(BaseSettings):
|
5 |
+
hf_token: str = Field(...)
|
6 |
+
model: str = Field("InvestmentResearchAI/LLM-ADE-dev")
|
7 |
+
|
8 |
+
chat_template: str = Field("chatml", description="Chat template for prompt formatting")
|
9 |
+
num_fewshot: int | None = Field(None, description="Option to use json mode examples")
|
10 |
+
load_in_4bit: str = Field("False", description="Option to load in 4bit with bitsandbytes")
|
11 |
+
max_depth: int = Field(5, description="Maximum number of recursive iteration")
|
12 |
+
|
13 |
+
config = Config(_env_file=".env")
|
functioncall.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
from config import config
|
5 |
+
from vllm import LLM, SamplingParams
|
6 |
+
|
7 |
+
from transformers import BitsAndBytesConfig
|
8 |
+
|
9 |
+
import functions
|
10 |
+
from prompter import PromptManager
|
11 |
+
from validator import validate_function_call_schema
|
12 |
+
|
13 |
+
from utils import (
|
14 |
+
inference_logger,
|
15 |
+
get_assistant_message,
|
16 |
+
get_chat_template,
|
17 |
+
validate_and_extract_tool_calls
|
18 |
+
)
|
19 |
+
|
20 |
+
class ModelInference:
|
21 |
+
def __init__(self, chat_template: str, load_in_4bit: bool = False):
|
22 |
+
self.prompter = PromptManager()
|
23 |
+
self.bnb_config = None
|
24 |
+
|
25 |
+
if load_in_4bit == "True": # Never use this
|
26 |
+
self.bnb_config = BitsAndBytesConfig(
|
27 |
+
load_in_4bit=True,
|
28 |
+
bnb_4bit_quant_type="nf4",
|
29 |
+
bnb_4bit_use_double_quant=True,
|
30 |
+
)
|
31 |
+
self.model = LLM(model=config.model)
|
32 |
+
|
33 |
+
self.tokenizer = self.model.get_tokenizer()
|
34 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
35 |
+
self.tokenizer.padding_side = "left"
|
36 |
+
|
37 |
+
if self.tokenizer.chat_template is None:
|
38 |
+
print("No chat template defined, getting chat_template...")
|
39 |
+
self.tokenizer.chat_template = get_chat_template(chat_template)
|
40 |
+
|
41 |
+
inference_logger.info(self.model.config)
|
42 |
+
inference_logger.info(self.model.generation_config)
|
43 |
+
inference_logger.info(self.tokenizer.special_tokens_map)
|
44 |
+
|
45 |
+
def process_completion_and_validate(self, completion, chat_template):
|
46 |
+
|
47 |
+
assistant_message = get_assistant_message(completion, chat_template, self.tokenizer.eos_token)
|
48 |
+
|
49 |
+
if assistant_message:
|
50 |
+
validation, tool_calls, error_message = validate_and_extract_tool_calls(assistant_message)
|
51 |
+
|
52 |
+
if validation:
|
53 |
+
inference_logger.info(f"parsed tool calls:\n{json.dumps(tool_calls, indent=2)}")
|
54 |
+
return tool_calls, assistant_message, error_message
|
55 |
+
else:
|
56 |
+
tool_calls = None
|
57 |
+
return tool_calls, assistant_message, error_message
|
58 |
+
else:
|
59 |
+
inference_logger.warning("Assistant message is None")
|
60 |
+
raise ValueError("Assistant message is None")
|
61 |
+
|
62 |
+
def execute_function_call(self, tool_call):
|
63 |
+
function_name = tool_call.get("name")
|
64 |
+
function_to_call = getattr(functions, function_name, None)
|
65 |
+
function_args = tool_call.get("arguments", {})
|
66 |
+
|
67 |
+
inference_logger.info(f"Invoking function call {function_name} ...")
|
68 |
+
function_response = function_to_call(*function_args.values())
|
69 |
+
results_dict = f'{{"name": "{function_name}", "content": {function_response}}}'
|
70 |
+
return results_dict
|
71 |
+
|
72 |
+
def run_inference(self, prompt):
|
73 |
+
sampling_params = SamplingParams(
|
74 |
+
temperature=0.8,
|
75 |
+
top_p=0.95,
|
76 |
+
repetition_penalty=1.1,
|
77 |
+
max_tokens=500,
|
78 |
+
stop_token_ids=[128009])
|
79 |
+
|
80 |
+
outputs = self.model.generate([prompt], sampling_params)
|
81 |
+
for output in outputs:
|
82 |
+
return output.outputs[0].text
|
83 |
+
|
84 |
+
def generate_function_call(self, query, chat_template, num_fewshot, max_depth=5):
|
85 |
+
try:
|
86 |
+
depth = 0
|
87 |
+
user_message = f"{query}\nThis is the first turn and you don't have <tool_results> to analyze yet"
|
88 |
+
chat = [{"role": "user", "content": user_message}]
|
89 |
+
tools = functions.get_openai_tools()
|
90 |
+
prompt = self.prompter.generate_prompt(chat, tools, num_fewshot)
|
91 |
+
completion = self.run_inference(prompt)
|
92 |
+
|
93 |
+
def recursive_loop(prompt, completion, depth):
|
94 |
+
nonlocal max_depth
|
95 |
+
tool_calls, assistant_message, error_message = self.process_completion_and_validate(completion, chat_template)
|
96 |
+
prompt.append({"role": "assistant", "content": assistant_message})
|
97 |
+
|
98 |
+
tool_message = f"Agent iteration {depth} to assist with user query: {query}\n"
|
99 |
+
if tool_calls:
|
100 |
+
inference_logger.info(f"Assistant Message:\n{assistant_message}")
|
101 |
+
|
102 |
+
for tool_call in tool_calls:
|
103 |
+
validation, message = validate_function_call_schema(tool_call, tools)
|
104 |
+
if validation:
|
105 |
+
try:
|
106 |
+
function_response = self.execute_function_call(tool_call)
|
107 |
+
tool_message += f"<tool_response>\n{function_response}\n</tool_response>\n"
|
108 |
+
inference_logger.info(f"Here's the response from the function call: {tool_call.get('name')}\n{function_response}")
|
109 |
+
except Exception as e:
|
110 |
+
inference_logger.info(f"Could not execute function: {e}")
|
111 |
+
tool_message += f"<tool_response>\nThere was an error when executing the function: {tool_call.get('name')}\nHere's the error traceback: {e}\nPlease call this function again with correct arguments within XML tags <tool_call></tool_call>\n</tool_response>\n"
|
112 |
+
else:
|
113 |
+
inference_logger.info(message)
|
114 |
+
tool_message += f"<tool_response>\nThere was an error validating function call against function signature: {tool_call.get('name')}\nHere's the error traceback: {message}\nPlease call this function again with correct arguments within XML tags <tool_call></tool_call>\n</tool_response>\n"
|
115 |
+
prompt.append({"role": "tool", "content": tool_message})
|
116 |
+
|
117 |
+
depth += 1
|
118 |
+
if depth >= max_depth:
|
119 |
+
print(f"Maximum recursion depth reached ({max_depth}). Stopping recursion.")
|
120 |
+
return
|
121 |
+
|
122 |
+
completion = self.run_inference(prompt)
|
123 |
+
recursive_loop(prompt, completion, depth)
|
124 |
+
elif error_message:
|
125 |
+
inference_logger.info(f"Assistant Message:\n{assistant_message}")
|
126 |
+
tool_message += f"<tool_response>\nThere was an error parsing function calls\n Here's the error stack trace: {error_message}\nPlease call the function again with correct syntax<tool_response>"
|
127 |
+
prompt.append({"role": "tool", "content": tool_message})
|
128 |
+
|
129 |
+
depth += 1
|
130 |
+
if depth >= max_depth:
|
131 |
+
print(f"Maximum recursion depth reached ({max_depth}). Stopping recursion.")
|
132 |
+
return
|
133 |
+
|
134 |
+
completion = self.run_inference(prompt)
|
135 |
+
recursive_loop(prompt, completion, depth)
|
136 |
+
else:
|
137 |
+
inference_logger.info(f"Assistant Message:\n{assistant_message}")
|
138 |
+
|
139 |
+
recursive_loop(prompt, completion, depth)
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
inference_logger.error(f"Exception occurred: {e}")
|
143 |
+
raise e
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
parser = argparse.ArgumentParser(description="Run recursive function calling loop")
|
147 |
+
parser.add_argument("--model_path", type=str, help="Path to the model folder")
|
148 |
+
parser.add_argument("--chat_template", type=str, default="chatml", help="Chat template for prompt formatting")
|
149 |
+
parser.add_argument("--num_fewshot", type=int, default=None, help="Option to use json mode examples")
|
150 |
+
parser.add_argument("--load_in_4bit", type=str, default="False", help="Option to load in 4bit with bitsandbytes")
|
151 |
+
parser.add_argument("--query", type=str, default="I need the current stock price of Tesla (TSLA)")
|
152 |
+
parser.add_argument("--max_depth", type=int, default=5, help="Maximum number of recursive iteration")
|
153 |
+
args = parser.parse_args()
|
154 |
+
|
155 |
+
# specify custom model path
|
156 |
+
if args.model_path:
|
157 |
+
inference = ModelInference(args.model_path, args.chat_template, args.load_in_4bit)
|
158 |
+
else:
|
159 |
+
model_path = 'InvestmentResearchAI/LLM-ADE-dev'
|
160 |
+
inference = ModelInference(model_path, args.chat_template, args.load_in_4bit)
|
161 |
+
|
162 |
+
# Run the model evaluator
|
163 |
+
inference.generate_function_call(args.query, args.chat_template, args.num_fewshot, args.max_depth)
|
functions.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import inspect
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
import yfinance as yf
|
6 |
+
import concurrent.futures
|
7 |
+
|
8 |
+
from typing import List
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
from utils import inference_logger
|
11 |
+
from langchain.tools import tool
|
12 |
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
13 |
+
|
14 |
+
@tool
|
15 |
+
def code_interpreter(code_markdown: str) -> dict | str:
|
16 |
+
"""
|
17 |
+
Execute the provided Python code string on the terminal using exec.
|
18 |
+
|
19 |
+
The string should contain valid, executable and pure Python code in markdown syntax.
|
20 |
+
Code should also import any required Python packages.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
code_markdown (str): The Python code with markdown syntax to be executed.
|
24 |
+
For example: ```python\n<code-string>\n```
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
dict | str: A dictionary containing variables declared and values returned by function calls,
|
28 |
+
or an error message if an exception occurred.
|
29 |
+
|
30 |
+
Note:
|
31 |
+
Use this function with caution, as executing arbitrary code can pose security risks.
|
32 |
+
"""
|
33 |
+
try:
|
34 |
+
# Extracting code from Markdown code block
|
35 |
+
code_lines = code_markdown.split('\n')[1:-1]
|
36 |
+
code_without_markdown = '\n'.join(code_lines)
|
37 |
+
|
38 |
+
# Create a new namespace for code execution
|
39 |
+
exec_namespace = {}
|
40 |
+
|
41 |
+
# Execute the code in the new namespace
|
42 |
+
exec(code_without_markdown, exec_namespace)
|
43 |
+
|
44 |
+
# Collect variables and function call results
|
45 |
+
result_dict = {}
|
46 |
+
for name, value in exec_namespace.items():
|
47 |
+
if callable(value):
|
48 |
+
try:
|
49 |
+
result_dict[name] = value()
|
50 |
+
except TypeError:
|
51 |
+
# If the function requires arguments, attempt to call it with arguments from the namespace
|
52 |
+
arg_names = inspect.getfullargspec(value).args
|
53 |
+
args = {arg_name: exec_namespace.get(arg_name) for arg_name in arg_names}
|
54 |
+
result_dict[name] = value(**args)
|
55 |
+
elif not name.startswith('_'): # Exclude variables starting with '_'
|
56 |
+
result_dict[name] = value
|
57 |
+
|
58 |
+
return result_dict
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
error_message = f"An error occurred: {e}"
|
62 |
+
inference_logger.error(error_message)
|
63 |
+
return error_message
|
64 |
+
|
65 |
+
@tool
|
66 |
+
def google_search_and_scrape(query: str) -> dict:
|
67 |
+
"""
|
68 |
+
Performs a Google search for the given query, retrieves the top search result URLs,
|
69 |
+
and scrapes the text content and table data from those pages in parallel.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
query (str): The search query.
|
73 |
+
Returns:
|
74 |
+
list: A list of dictionaries containing the URL, text content, and table data for each scraped page.
|
75 |
+
"""
|
76 |
+
num_results = 2
|
77 |
+
url = 'https://www.google.com/search'
|
78 |
+
params = {'q': query, 'num': num_results}
|
79 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.3'}
|
80 |
+
|
81 |
+
inference_logger.info(f"Performing google search with query: {query}\nplease wait...")
|
82 |
+
response = requests.get(url, params=params, headers=headers)
|
83 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
84 |
+
urls = [result.find('a')['href'] for result in soup.find_all('div', class_='tF2Cxc')]
|
85 |
+
|
86 |
+
inference_logger.info(f"Scraping text from urls, please wait...")
|
87 |
+
[inference_logger.info(url) for url in urls]
|
88 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
|
89 |
+
futures = [executor.submit(lambda url: (url, requests.get(url, headers=headers).text if isinstance(url, str) else None), url) for url in urls[:num_results] if isinstance(url, str)]
|
90 |
+
results = []
|
91 |
+
for future in concurrent.futures.as_completed(futures):
|
92 |
+
url, html = future.result()
|
93 |
+
soup = BeautifulSoup(html, 'html.parser')
|
94 |
+
paragraphs = [p.text.strip() for p in soup.find_all('p') if p.text.strip()]
|
95 |
+
text_content = ' '.join(paragraphs)
|
96 |
+
text_content = re.sub(r'\s+', ' ', text_content)
|
97 |
+
table_data = [[cell.get_text(strip=True) for cell in row.find_all('td')] for table in soup.find_all('table') for row in table.find_all('tr')]
|
98 |
+
if text_content or table_data:
|
99 |
+
results.append({'url': url, 'content': text_content, 'tables': table_data})
|
100 |
+
return results
|
101 |
+
|
102 |
+
@tool
|
103 |
+
def get_current_stock_price(symbol: str) -> float:
|
104 |
+
"""
|
105 |
+
Get the current stock price for a given symbol.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
symbol (str): The stock symbol.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
float: The current stock price, or None if an error occurs.
|
112 |
+
"""
|
113 |
+
try:
|
114 |
+
stock = yf.Ticker(symbol)
|
115 |
+
# Use "regularMarketPrice" for regular market hours, or "currentPrice" for pre/post market
|
116 |
+
current_price = stock.info.get("regularMarketPrice", stock.info.get("currentPrice"))
|
117 |
+
return current_price if current_price else None
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error fetching current price for {symbol}: {e}")
|
120 |
+
return None
|
121 |
+
|
122 |
+
@tool
|
123 |
+
def get_stock_fundamentals(symbol: str) -> dict:
|
124 |
+
"""
|
125 |
+
Get fundamental data for a given stock symbol using yfinance API.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
symbol (str): The stock symbol.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
dict: A dictionary containing fundamental data.
|
132 |
+
Keys:
|
133 |
+
- 'symbol': The stock symbol.
|
134 |
+
- 'company_name': The long name of the company.
|
135 |
+
- 'sector': The sector to which the company belongs.
|
136 |
+
- 'industry': The industry to which the company belongs.
|
137 |
+
- 'market_cap': The market capitalization of the company.
|
138 |
+
- 'pe_ratio': The forward price-to-earnings ratio.
|
139 |
+
- 'pb_ratio': The price-to-book ratio.
|
140 |
+
- 'dividend_yield': The dividend yield.
|
141 |
+
- 'eps': The trailing earnings per share.
|
142 |
+
- 'beta': The beta value of the stock.
|
143 |
+
- '52_week_high': The 52-week high price of the stock.
|
144 |
+
- '52_week_low': The 52-week low price of the stock.
|
145 |
+
"""
|
146 |
+
try:
|
147 |
+
stock = yf.Ticker(symbol)
|
148 |
+
info = stock.info
|
149 |
+
fundamentals = {
|
150 |
+
'symbol': symbol,
|
151 |
+
'company_name': info.get('longName', ''),
|
152 |
+
'sector': info.get('sector', ''),
|
153 |
+
'industry': info.get('industry', ''),
|
154 |
+
'market_cap': info.get('marketCap', None),
|
155 |
+
'pe_ratio': info.get('forwardPE', None),
|
156 |
+
'pb_ratio': info.get('priceToBook', None),
|
157 |
+
'dividend_yield': info.get('dividendYield', None),
|
158 |
+
'eps': info.get('trailingEps', None),
|
159 |
+
'beta': info.get('beta', None),
|
160 |
+
'52_week_high': info.get('fiftyTwoWeekHigh', None),
|
161 |
+
'52_week_low': info.get('fiftyTwoWeekLow', None)
|
162 |
+
}
|
163 |
+
return fundamentals
|
164 |
+
except Exception as e:
|
165 |
+
print(f"Error getting fundamentals for {symbol}: {e}")
|
166 |
+
return {}
|
167 |
+
|
168 |
+
@tool
|
169 |
+
def get_financial_statements(symbol: str) -> dict:
|
170 |
+
"""
|
171 |
+
Get financial statements for a given stock symbol.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
symbol (str): The stock symbol.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
dict: Dictionary containing financial statements (income statement, balance sheet, cash flow statement).
|
178 |
+
"""
|
179 |
+
try:
|
180 |
+
stock = yf.Ticker(symbol)
|
181 |
+
financials = stock.financials
|
182 |
+
return financials
|
183 |
+
except Exception as e:
|
184 |
+
print(f"Error fetching financial statements for {symbol}: {e}")
|
185 |
+
return {}
|
186 |
+
|
187 |
+
@tool
|
188 |
+
def get_key_financial_ratios(symbol: str) -> dict:
|
189 |
+
"""
|
190 |
+
Get key financial ratios for a given stock symbol.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
symbol (str): The stock symbol.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
dict: Dictionary containing key financial ratios.
|
197 |
+
"""
|
198 |
+
try:
|
199 |
+
stock = yf.Ticker(symbol)
|
200 |
+
key_ratios = stock.info
|
201 |
+
return key_ratios
|
202 |
+
except Exception as e:
|
203 |
+
print(f"Error fetching key financial ratios for {symbol}: {e}")
|
204 |
+
return {}
|
205 |
+
|
206 |
+
@tool
|
207 |
+
def get_analyst_recommendations(symbol: str) -> pd.DataFrame:
|
208 |
+
"""
|
209 |
+
Get analyst recommendations for a given stock symbol.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
symbol (str): The stock symbol.
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
pd.DataFrame: DataFrame containing analyst recommendations.
|
216 |
+
"""
|
217 |
+
try:
|
218 |
+
stock = yf.Ticker(symbol)
|
219 |
+
recommendations = stock.recommendations
|
220 |
+
return recommendations
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Error fetching analyst recommendations for {symbol}: {e}")
|
223 |
+
return pd.DataFrame()
|
224 |
+
|
225 |
+
@tool
|
226 |
+
def get_dividend_data(symbol: str) -> pd.DataFrame:
|
227 |
+
"""
|
228 |
+
Get dividend data for a given stock symbol.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
symbol (str): The stock symbol.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
pd.DataFrame: DataFrame containing dividend data.
|
235 |
+
"""
|
236 |
+
try:
|
237 |
+
stock = yf.Ticker(symbol)
|
238 |
+
dividends = stock.dividends
|
239 |
+
return dividends
|
240 |
+
except Exception as e:
|
241 |
+
print(f"Error fetching dividend data for {symbol}: {e}")
|
242 |
+
return pd.DataFrame()
|
243 |
+
|
244 |
+
@tool
|
245 |
+
def get_company_news(symbol: str) -> pd.DataFrame:
|
246 |
+
"""
|
247 |
+
Get company news and press releases for a given stock symbol.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
symbol (str): The stock symbol.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
pd.DataFrame: DataFrame containing company news and press releases.
|
254 |
+
"""
|
255 |
+
try:
|
256 |
+
news = yf.Ticker(symbol).news
|
257 |
+
return news
|
258 |
+
except Exception as e:
|
259 |
+
print(f"Error fetching company news for {symbol}: {e}")
|
260 |
+
return pd.DataFrame()
|
261 |
+
|
262 |
+
@tool
|
263 |
+
def get_technical_indicators(symbol: str) -> pd.DataFrame:
|
264 |
+
"""
|
265 |
+
Get technical indicators for a given stock symbol.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
symbol (str): The stock symbol.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
pd.DataFrame: DataFrame containing technical indicators.
|
272 |
+
"""
|
273 |
+
try:
|
274 |
+
indicators = yf.Ticker(symbol).history(period="max")
|
275 |
+
return indicators
|
276 |
+
except Exception as e:
|
277 |
+
print(f"Error fetching technical indicators for {symbol}: {e}")
|
278 |
+
return pd.DataFrame()
|
279 |
+
|
280 |
+
@tool
|
281 |
+
def get_company_profile(symbol: str) -> dict:
|
282 |
+
"""
|
283 |
+
Get company profile and overview for a given stock symbol.
|
284 |
+
|
285 |
+
Args:
|
286 |
+
symbol (str): The stock symbol.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
dict: Dictionary containing company profile and overview.
|
290 |
+
"""
|
291 |
+
try:
|
292 |
+
profile = yf.Ticker(symbol).info
|
293 |
+
return profile
|
294 |
+
except Exception as e:
|
295 |
+
print(f"Error fetching company profile for {symbol}: {e}")
|
296 |
+
return {}
|
297 |
+
|
298 |
+
def get_openai_tools() -> List[dict]:
|
299 |
+
functions = [
|
300 |
+
code_interpreter,
|
301 |
+
google_search_and_scrape,
|
302 |
+
get_current_stock_price,
|
303 |
+
get_company_news,
|
304 |
+
get_company_profile,
|
305 |
+
get_stock_fundamentals,
|
306 |
+
get_financial_statements,
|
307 |
+
get_key_financial_ratios,
|
308 |
+
get_analyst_recommendations,
|
309 |
+
get_dividend_data,
|
310 |
+
get_technical_indicators
|
311 |
+
]
|
312 |
+
|
313 |
+
tools = [convert_to_openai_tool(f) for f in functions]
|
314 |
+
return tools
|
prompt_assets/few_shot.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"example": "```\nSYSTEM: You are a helpful assistant who has access to functions. Use them if required\n<tools>[\n {\n \"name\": \"calculate_distance\",\n \"description\": \"Calculate the distance between two locations\",\n \"parameters\": {\n \"type\": \"object\",\n \"properties\": {\n \"origin\": {\n \"type\": \"string\",\n \"description\": \"The starting location\"\n },\n \"destination\": {\n \"type\": \"string\",\n \"description\": \"The destination location\"\n },\n \"mode\": {\n \"type\": \"string\",\n \"description\": \"The mode of transportation\"\n }\n },\n \"required\": [\n \"origin\",\n \"destination\",\n \"mode\"\n ]\n }\n },\n {\n \"name\": \"generate_password\",\n \"description\": \"Generate a random password\",\n \"parameters\": {\n \"type\": \"object\",\n \"properties\": {\n \"length\": {\n \"type\": \"integer\",\n \"description\": \"The length of the password\"\n }\n },\n \"required\": [\n \"length\"\n ]\n }\n }\n]\n\n</tools>\nUSER: Hi, I need to know the distance from New York to Los Angeles by car.\nASSISTANT:\n<tool_call>\n{\"arguments\": {\"origin\": \"New York\",\n \"destination\": \"Los Angeles\", \"mode\": \"car\"}, \"name\": \"calculate_distance\"}\n</tool_call>\n```\n"
|
4 |
+
},
|
5 |
+
{
|
6 |
+
"example": "```\nSYSTEM: You are a helpful assistant with access to functions. Use them if required\n<tools>[\n {\n \"name\": \"calculate_distance\",\n \"description\": \"Calculate the distance between two locations\",\n \"parameters\": {\n \"type\": \"object\",\n \"properties\": {\n \"origin\": {\n \"type\": \"string\",\n \"description\": \"The starting location\"\n },\n \"destination\": {\n \"type\": \"string\",\n \"description\": \"The destination location\"\n },\n \"mode\": {\n \"type\": \"string\",\n \"description\": \"The mode of transportation\"\n }\n },\n \"required\": [\n \"origin\",\n \"destination\",\n \"mode\"\n ]\n }\n },\n {\n \"name\": \"generate_password\",\n \"description\": \"Generate a random password\",\n \"parameters\": {\n \"type\": \"object\",\n \"properties\": {\n \"length\": {\n \"type\": \"integer\",\n \"description\": \"The length of the password\"\n }\n },\n \"required\": [\n \"length\"\n ]\n }\n }\n]\n\n</tools>\nUSER: Can you help me generate a random password with a length of 8 characters?\nASSISTANT:\n<tool_call>\n{\"arguments\": {\"length\": 8}, \"name\": \"generate_password\"}\n</tool_call>\n```"
|
7 |
+
}
|
8 |
+
]
|
prompt_assets/sys_prompt.yml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Role: |
|
2 |
+
You are an expert financial advisor named IRAI. You have a comprehensive understanding of finance and investing with experience and expertise in all areas of finance.
|
3 |
+
You are a function calling AI agent with self-recursion.
|
4 |
+
You can call only one function at a time and analyse data you get from function response.
|
5 |
+
You are provided with function signatures within <tools></tools> XML tags.
|
6 |
+
The current date is: {date}.
|
7 |
+
Objective: |
|
8 |
+
You may use agentic frameworks for reasoning and planning to help with user query.
|
9 |
+
Please call a function and wait for function results to be provided to you in the next iteration.
|
10 |
+
Don't make assumptions about what values to plug into function arguments.
|
11 |
+
Once you have called a function, results will be fed back to you within <tool_response></tool_response> XML tags.
|
12 |
+
Don't make assumptions about tool results if <tool_response> XML tags are not present since function hasn't been executed yet.
|
13 |
+
Analyze the data once you get the results and call another function.
|
14 |
+
At each iteration please continue adding the your analysis to previous summary.
|
15 |
+
Your final response should directly answer the user query with an anlysis or summary of the results of function calls.
|
16 |
+
Tools: |
|
17 |
+
Here are the available tools:
|
18 |
+
<tools> {tools} </tools>
|
19 |
+
If the provided function signatures doesn't have the function you must call, you may write executable python code in markdown syntax and call code_interpreter() function as follows:
|
20 |
+
<tool_call>
|
21 |
+
{{"arguments": {{"code_markdown": <python-code>, "name": "code_interpreter"}}}}
|
22 |
+
</tool_call>
|
23 |
+
Make sure that the json object above with code markdown block is parseable with json.loads() and the XML block with XML ElementTree.
|
24 |
+
Examples: |
|
25 |
+
Here are some example usage of functions:
|
26 |
+
{examples}
|
27 |
+
Schema: |
|
28 |
+
Use the following pydantic model json schema for each tool call you will make:
|
29 |
+
{schema}
|
30 |
+
Instructions: |
|
31 |
+
At the very first turn you don't have <tool_results> so you shouldn't not make up the results.
|
32 |
+
Please keep a running summary with analysis of previous function results and summaries from previous iterations.
|
33 |
+
Do not stop calling functions until the task has been accomplished or you've reached max iteration of 10.
|
34 |
+
Calling multiple functions at once can overload the system and increase cost so call one function at a time please.
|
35 |
+
If you plan to continue with analysis, always call another function.
|
36 |
+
For each function call return a valid json object (using doulbe quotes) with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
37 |
+
<tool_call>
|
38 |
+
{{"arguments": <args-dict>, "name": <function-name>}}
|
39 |
+
</tool_call>
|
40 |
+
Style and tone: |
|
41 |
+
Answer in a friendly and engaging manner representing a top female investment professional working at a leading investment bank.
|
42 |
+
Audience: |
|
43 |
+
The questions will be asked by top technology executives and CFO of large fintech companies and successful startups.
|
prompter.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import Dict
|
4 |
+
from schema import FunctionCall
|
5 |
+
from utils import (
|
6 |
+
get_fewshot_examples
|
7 |
+
)
|
8 |
+
import yaml
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
|
12 |
+
class PromptSchema(BaseModel):
|
13 |
+
Role: str
|
14 |
+
Objective: str
|
15 |
+
Tools: str
|
16 |
+
Examples: str
|
17 |
+
Schema: str
|
18 |
+
Instructions: str
|
19 |
+
|
20 |
+
class PromptManager:
|
21 |
+
def __init__(self):
|
22 |
+
self.script_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
+
|
24 |
+
def format_yaml_prompt(self, prompt_schema: PromptSchema, variables: Dict) -> str:
|
25 |
+
formatted_prompt = ""
|
26 |
+
for field, value in prompt_schema.dict().items():
|
27 |
+
if field == "Examples" and variables.get("examples") is None:
|
28 |
+
continue
|
29 |
+
formatted_value = value.format(**variables)
|
30 |
+
if field == "Instructions":
|
31 |
+
formatted_prompt += f"{formatted_value}"
|
32 |
+
else:
|
33 |
+
formatted_value = formatted_value.replace("\n", " ")
|
34 |
+
formatted_prompt += f"{formatted_value}"
|
35 |
+
return formatted_prompt
|
36 |
+
|
37 |
+
def read_yaml_file(self, file_path: str) -> PromptSchema:
|
38 |
+
with open(file_path, 'r') as file:
|
39 |
+
yaml_content = yaml.safe_load(file)
|
40 |
+
|
41 |
+
prompt_schema = PromptSchema(
|
42 |
+
Role=yaml_content.get('Role', ''),
|
43 |
+
Objective=yaml_content.get('Objective', ''),
|
44 |
+
Tools=yaml_content.get('Tools', ''),
|
45 |
+
Examples=yaml_content.get('Examples', ''),
|
46 |
+
Schema=yaml_content.get('Schema', ''),
|
47 |
+
Instructions=yaml_content.get('Instructions', ''),
|
48 |
+
)
|
49 |
+
return prompt_schema
|
50 |
+
|
51 |
+
def generate_prompt(self, user_prompt, tools, num_fewshot=None):
|
52 |
+
prompt_path = os.path.join(self.script_dir, 'prompt_assets', 'sys_prompt.yml')
|
53 |
+
prompt_schema = self.read_yaml_file(prompt_path)
|
54 |
+
|
55 |
+
if num_fewshot is not None:
|
56 |
+
examples = get_fewshot_examples(num_fewshot)
|
57 |
+
else:
|
58 |
+
examples = None
|
59 |
+
|
60 |
+
schema_json = json.loads(FunctionCall.schema_json())
|
61 |
+
|
62 |
+
variables = {
|
63 |
+
"date": datetime.date.today(),
|
64 |
+
"tools": tools,
|
65 |
+
"examples": examples,
|
66 |
+
"schema": schema_json
|
67 |
+
}
|
68 |
+
sys_prompt = self.format_yaml_prompt(prompt_schema, variables)
|
69 |
+
|
70 |
+
prompt = [
|
71 |
+
{'content': sys_prompt, 'role': 'system'}
|
72 |
+
]
|
73 |
+
prompt.extend(user_prompt)
|
74 |
+
return prompt
|
75 |
+
|
76 |
+
|
schema.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import List, Dict, Literal, Optional
|
3 |
+
|
4 |
+
class FunctionCall(BaseModel):
|
5 |
+
arguments: dict
|
6 |
+
"""
|
7 |
+
The arguments to call the function with, as generated by the model in JSON
|
8 |
+
format. Note that the model does not always generate valid JSON, and may
|
9 |
+
hallucinate parameters not defined by your function schema. Validate the
|
10 |
+
arguments in your code before calling your function.
|
11 |
+
"""
|
12 |
+
|
13 |
+
name: str
|
14 |
+
"""The name of the function to call."""
|
15 |
+
|
16 |
+
class FunctionDefinition(BaseModel):
|
17 |
+
name: str
|
18 |
+
description: Optional[str] = None
|
19 |
+
parameters: Optional[Dict[str, object]] = None
|
20 |
+
|
21 |
+
class FunctionSignature(BaseModel):
|
22 |
+
function: FunctionDefinition
|
23 |
+
type: Literal["function"]
|
utils.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import datetime
|
7 |
+
import xml.etree.ElementTree as ET
|
8 |
+
|
9 |
+
from logging.handlers import RotatingFileHandler
|
10 |
+
|
11 |
+
logging.basicConfig(
|
12 |
+
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
|
13 |
+
datefmt="%Y-%m-%d:%H:%M:%S",
|
14 |
+
level=logging.INFO,
|
15 |
+
)
|
16 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
17 |
+
now = datetime.datetime.now()
|
18 |
+
log_folder = os.path.join(script_dir, "inference_logs")
|
19 |
+
os.makedirs(log_folder, exist_ok=True)
|
20 |
+
log_file_path = os.path.join(
|
21 |
+
log_folder, f"function-calling-inference_{now.strftime('%Y-%m-%d_%H-%M-%S')}.log"
|
22 |
+
)
|
23 |
+
# Use RotatingFileHandler from the logging.handlers module
|
24 |
+
file_handler = RotatingFileHandler(log_file_path, maxBytes=0, backupCount=0)
|
25 |
+
file_handler.setLevel(logging.INFO)
|
26 |
+
|
27 |
+
formatter = logging.Formatter("%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d:%H:%M:%S")
|
28 |
+
file_handler.setFormatter(formatter)
|
29 |
+
|
30 |
+
inference_logger = logging.getLogger("function-calling-inference")
|
31 |
+
inference_logger.addHandler(file_handler)
|
32 |
+
|
33 |
+
def get_fewshot_examples(num_fewshot):
|
34 |
+
"""return a list of few shot examples"""
|
35 |
+
example_path = os.path.join(script_dir, 'prompt_assets', 'few_shot.json')
|
36 |
+
with open(example_path, 'r') as file:
|
37 |
+
examples = json.load(file) # Use json.load with the file object, not the file path
|
38 |
+
if num_fewshot > len(examples):
|
39 |
+
raise ValueError(f"Not enough examples (got {num_fewshot}, but there are only {len(examples)} examples).")
|
40 |
+
return examples[:num_fewshot]
|
41 |
+
|
42 |
+
def get_chat_template(chat_template):
|
43 |
+
"""read chat template from jinja file"""
|
44 |
+
template_path = os.path.join(script_dir, 'chat_templates', f"{chat_template}.j2")
|
45 |
+
|
46 |
+
if not os.path.exists(template_path):
|
47 |
+
print
|
48 |
+
inference_logger.error(f"Template file not found: {chat_template}")
|
49 |
+
return None
|
50 |
+
try:
|
51 |
+
with open(template_path, 'r') as file:
|
52 |
+
template = file.read()
|
53 |
+
return template
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error loading template: {e}")
|
56 |
+
return None
|
57 |
+
|
58 |
+
def get_assistant_message(completion, chat_template, eos_token):
|
59 |
+
"""define and match pattern to find the assistant message"""
|
60 |
+
completion = completion.strip()
|
61 |
+
|
62 |
+
if chat_template == "zephyr":
|
63 |
+
assistant_pattern = re.compile(r'<\|assistant\|>((?:(?!<\|assistant\|>).)*)$', re.DOTALL)
|
64 |
+
elif chat_template == "chatml":
|
65 |
+
assistant_pattern = re.compile(r'<\|im_start\|>\s*assistant((?:(?!<\|im_start\|>\s*assistant).)*)$', re.DOTALL)
|
66 |
+
|
67 |
+
elif chat_template == "vicuna":
|
68 |
+
assistant_pattern = re.compile(r'ASSISTANT:\s*((?:(?!ASSISTANT:).)*)$', re.DOTALL)
|
69 |
+
else:
|
70 |
+
raise NotImplementedError(f"Handling for chat_template '{chat_template}' is not implemented.")
|
71 |
+
|
72 |
+
assistant_match = assistant_pattern.search(completion)
|
73 |
+
if assistant_match:
|
74 |
+
assistant_content = assistant_match.group(1).strip()
|
75 |
+
if chat_template == "vicuna":
|
76 |
+
eos_token = f"</s>{eos_token}"
|
77 |
+
return assistant_content.replace(eos_token, "")
|
78 |
+
else:
|
79 |
+
assistant_content = None
|
80 |
+
inference_logger.info("No match found for the assistant pattern")
|
81 |
+
return assistant_content
|
82 |
+
|
83 |
+
def validate_and_extract_tool_calls(assistant_content):
|
84 |
+
validation_result = False
|
85 |
+
tool_calls = []
|
86 |
+
error_message = None
|
87 |
+
|
88 |
+
try:
|
89 |
+
# wrap content in root element
|
90 |
+
xml_root_element = f"<root>{assistant_content}</root>"
|
91 |
+
root = ET.fromstring(xml_root_element)
|
92 |
+
|
93 |
+
# extract JSON data
|
94 |
+
for element in root.findall(".//tool_call"):
|
95 |
+
json_data = None
|
96 |
+
try:
|
97 |
+
json_text = element.text.strip()
|
98 |
+
|
99 |
+
try:
|
100 |
+
# Prioritize json.loads for better error handling
|
101 |
+
json_data = json.loads(json_text)
|
102 |
+
except json.JSONDecodeError as json_err:
|
103 |
+
try:
|
104 |
+
# Fallback to ast.literal_eval if json.loads fails
|
105 |
+
json_data = ast.literal_eval(json_text)
|
106 |
+
except (SyntaxError, ValueError) as eval_err:
|
107 |
+
error_message = f"JSON parsing failed with both json.loads and ast.literal_eval:\n"\
|
108 |
+
f"- JSON Decode Error: {json_err}\n"\
|
109 |
+
f"- Fallback Syntax/Value Error: {eval_err}\n"\
|
110 |
+
f"- Problematic JSON text: {json_text}"
|
111 |
+
inference_logger.error(error_message)
|
112 |
+
continue
|
113 |
+
except Exception as e:
|
114 |
+
error_message = f"Cannot strip text: {e}"
|
115 |
+
inference_logger.error(error_message)
|
116 |
+
|
117 |
+
if json_data is not None:
|
118 |
+
tool_calls.append(json_data)
|
119 |
+
validation_result = True
|
120 |
+
|
121 |
+
except ET.ParseError as err:
|
122 |
+
error_message = f"XML Parse Error: {err}"
|
123 |
+
inference_logger.error(f"XML Parse Error: {err}")
|
124 |
+
|
125 |
+
# Return default values if no valid data is extracted
|
126 |
+
return validation_result, tool_calls, error_message
|
127 |
+
|
128 |
+
def extract_json_from_markdown(text):
|
129 |
+
"""
|
130 |
+
Extracts the JSON string from the given text using a regular expression pattern.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
text (str): The input text containing the JSON string.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
dict: The JSON data loaded from the extracted string, or None if the JSON string is not found.
|
137 |
+
"""
|
138 |
+
json_pattern = r'```json\r?\n(.*?)\r?\n```'
|
139 |
+
match = re.search(json_pattern, text, re.DOTALL)
|
140 |
+
if match:
|
141 |
+
json_string = match.group(1)
|
142 |
+
try:
|
143 |
+
data = json.loads(json_string)
|
144 |
+
return data
|
145 |
+
except json.JSONDecodeError as e:
|
146 |
+
print(f"Error decoding JSON string: {e}")
|
147 |
+
else:
|
148 |
+
print("JSON string not found in the text.")
|
149 |
+
return None
|
validator.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import json
|
3 |
+
from jsonschema import validate
|
4 |
+
from pydantic import ValidationError
|
5 |
+
from utils import inference_logger, extract_json_from_markdown
|
6 |
+
from schema import FunctionCall, FunctionSignature
|
7 |
+
|
8 |
+
def validate_function_call_schema(call, signatures):
|
9 |
+
try:
|
10 |
+
call_data = FunctionCall(**call)
|
11 |
+
except ValidationError as e:
|
12 |
+
return False, str(e)
|
13 |
+
|
14 |
+
for signature in signatures:
|
15 |
+
try:
|
16 |
+
signature_data = FunctionSignature(**signature)
|
17 |
+
if signature_data.function.name == call_data.name:
|
18 |
+
# Validate types in function arguments
|
19 |
+
for arg_name, arg_schema in signature_data.function.parameters.get('properties', {}).items():
|
20 |
+
if arg_name in call_data.arguments:
|
21 |
+
call_arg_value = call_data.arguments[arg_name]
|
22 |
+
if call_arg_value:
|
23 |
+
try:
|
24 |
+
validate_argument_type(arg_name, call_arg_value, arg_schema)
|
25 |
+
except Exception as arg_validation_error:
|
26 |
+
return False, str(arg_validation_error)
|
27 |
+
|
28 |
+
# Check if all required arguments are present
|
29 |
+
required_arguments = signature_data.function.parameters.get('required', [])
|
30 |
+
result, missing_arguments = check_required_arguments(call_data.arguments, required_arguments)
|
31 |
+
if not result:
|
32 |
+
return False, f"Missing required arguments: {missing_arguments}"
|
33 |
+
|
34 |
+
return True, None
|
35 |
+
except Exception as e:
|
36 |
+
# Handle validation errors for the function signature
|
37 |
+
return False, str(e)
|
38 |
+
|
39 |
+
# No matching function signature found
|
40 |
+
return False, f"No matching function signature found for function: {call_data.name}"
|
41 |
+
|
42 |
+
def check_required_arguments(call_arguments, required_arguments):
|
43 |
+
missing_arguments = [arg for arg in required_arguments if arg not in call_arguments]
|
44 |
+
return not bool(missing_arguments), missing_arguments
|
45 |
+
|
46 |
+
def validate_enum_value(arg_name, arg_value, enum_values):
|
47 |
+
if arg_value not in enum_values:
|
48 |
+
raise Exception(
|
49 |
+
f"Invalid value '{arg_value}' for parameter {arg_name}. Expected one of {', '.join(map(str, enum_values))}"
|
50 |
+
)
|
51 |
+
|
52 |
+
def validate_argument_type(arg_name, arg_value, arg_schema):
|
53 |
+
arg_type = arg_schema.get('type', None)
|
54 |
+
if arg_type:
|
55 |
+
if arg_type == 'string' and 'enum' in arg_schema:
|
56 |
+
enum_values = arg_schema['enum']
|
57 |
+
if None not in enum_values and enum_values != []:
|
58 |
+
try:
|
59 |
+
validate_enum_value(arg_name, arg_value, enum_values)
|
60 |
+
except Exception as e:
|
61 |
+
# Propagate the validation error message
|
62 |
+
raise Exception(f"Error validating function call: {e}")
|
63 |
+
|
64 |
+
python_type = get_python_type(arg_type)
|
65 |
+
if not isinstance(arg_value, python_type):
|
66 |
+
raise Exception(f"Type mismatch for parameter {arg_name}. Expected: {arg_type}, Got: {type(arg_value)}")
|
67 |
+
|
68 |
+
def get_python_type(json_type):
|
69 |
+
type_mapping = {
|
70 |
+
'string': str,
|
71 |
+
'number': (int, float),
|
72 |
+
'integer': int,
|
73 |
+
'boolean': bool,
|
74 |
+
'array': list,
|
75 |
+
'object': dict,
|
76 |
+
'null': type(None),
|
77 |
+
}
|
78 |
+
return type_mapping[json_type]
|
79 |
+
|
80 |
+
def validate_json_data(json_object, json_schema):
|
81 |
+
valid = False
|
82 |
+
error_message = None
|
83 |
+
result_json = None
|
84 |
+
|
85 |
+
try:
|
86 |
+
# Attempt to load JSON using json.loads
|
87 |
+
try:
|
88 |
+
result_json = json.loads(json_object)
|
89 |
+
except json.decoder.JSONDecodeError:
|
90 |
+
# If json.loads fails, try ast.literal_eval
|
91 |
+
try:
|
92 |
+
result_json = ast.literal_eval(json_object)
|
93 |
+
except (SyntaxError, ValueError) as e:
|
94 |
+
try:
|
95 |
+
result_json = extract_json_from_markdown(json_object)
|
96 |
+
except Exception as e:
|
97 |
+
error_message = f"JSON decoding error: {e}"
|
98 |
+
inference_logger.info(f"Validation failed for JSON data: {error_message}")
|
99 |
+
return valid, result_json, error_message
|
100 |
+
|
101 |
+
# Return early if both json.loads and ast.literal_eval fail
|
102 |
+
if result_json is None:
|
103 |
+
error_message = "Failed to decode JSON data"
|
104 |
+
inference_logger.info(f"Validation failed for JSON data: {error_message}")
|
105 |
+
return valid, result_json, error_message
|
106 |
+
|
107 |
+
# Validate each item in the list against schema if it's a list
|
108 |
+
if isinstance(result_json, list):
|
109 |
+
for index, item in enumerate(result_json):
|
110 |
+
try:
|
111 |
+
validate(instance=item, schema=json_schema)
|
112 |
+
inference_logger.info(f"Item {index+1} is valid against the schema.")
|
113 |
+
except ValidationError as e:
|
114 |
+
error_message = f"Validation failed for item {index+1}: {e}"
|
115 |
+
break
|
116 |
+
else:
|
117 |
+
# Default to validation without list
|
118 |
+
try:
|
119 |
+
validate(instance=result_json, schema=json_schema)
|
120 |
+
except ValidationError as e:
|
121 |
+
error_message = f"Validation failed: {e}"
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
error_message = f"Error occurred: {e}"
|
125 |
+
|
126 |
+
if error_message is None:
|
127 |
+
valid = True
|
128 |
+
inference_logger.info("JSON data is valid against the schema.")
|
129 |
+
else:
|
130 |
+
inference_logger.info(f"Validation failed for JSON data: {error_message}")
|
131 |
+
|
132 |
+
return valid, result_json, error_message
|