File size: 8,045 Bytes
c124df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import torch
import json
from config import config
from vllm import LLM, SamplingParams

from transformers import BitsAndBytesConfig

import functions
from prompter import PromptManager
from validator import validate_function_call_schema

from utils import (
    inference_logger,
    get_assistant_message,
    get_chat_template,
    validate_and_extract_tool_calls
)

class ModelInference:
    def __init__(self, chat_template: str, load_in_4bit: bool = False):
        self.prompter = PromptManager()
        self.bnb_config = None

        if load_in_4bit == "True": # Never use this
            self.bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_use_double_quant=True,
            )
        self.model = LLM(model=config.model)

        self.tokenizer = self.model.get_tokenizer()
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = "left"

        if self.tokenizer.chat_template is None:
            print("No chat template defined, getting chat_template...")
            self.tokenizer.chat_template = get_chat_template(chat_template)
        
        inference_logger.info(self.model.config)
        inference_logger.info(self.model.generation_config)
        inference_logger.info(self.tokenizer.special_tokens_map)

    def process_completion_and_validate(self, completion, chat_template):

        assistant_message = get_assistant_message(completion, chat_template, self.tokenizer.eos_token)

        if assistant_message:
            validation, tool_calls, error_message = validate_and_extract_tool_calls(assistant_message)

            if validation:
                inference_logger.info(f"parsed tool calls:\n{json.dumps(tool_calls, indent=2)}")
                return tool_calls, assistant_message, error_message
            else:
                tool_calls = None
                return tool_calls, assistant_message, error_message
        else:
            inference_logger.warning("Assistant message is None")
            raise ValueError("Assistant message is None")
        
    def execute_function_call(self, tool_call):
        function_name = tool_call.get("name")
        function_to_call = getattr(functions, function_name, None)
        function_args = tool_call.get("arguments", {})

        inference_logger.info(f"Invoking function call {function_name} ...")
        function_response = function_to_call(*function_args.values())
        results_dict = f'{{"name": "{function_name}", "content": {function_response}}}'
        return results_dict
    
    def run_inference(self, prompt):
        sampling_params = SamplingParams(
            temperature=0.8, 
            top_p=0.95, 
            repetition_penalty=1.1,
            max_tokens=500, 
            stop_token_ids=[128009])

        outputs = self.model.generate([prompt], sampling_params)
        for output in outputs:
            return output.outputs[0].text

    def generate_function_call(self, query, chat_template, num_fewshot, max_depth=5):
        try:
            depth = 0
            user_message = f"{query}\nThis is the first turn and you don't have <tool_results> to analyze yet"
            chat = [{"role": "user", "content": user_message}]
            tools = functions.get_openai_tools()
            prompt = self.prompter.generate_prompt(chat, tools, num_fewshot)
            completion = self.run_inference(prompt)

            def recursive_loop(prompt, completion, depth):
                nonlocal max_depth
                tool_calls, assistant_message, error_message = self.process_completion_and_validate(completion, chat_template)
                prompt.append({"role": "assistant", "content": assistant_message})

                tool_message = f"Agent iteration {depth} to assist with user query: {query}\n"
                if tool_calls:
                    inference_logger.info(f"Assistant Message:\n{assistant_message}")

                    for tool_call in tool_calls:
                        validation, message = validate_function_call_schema(tool_call, tools)
                        if validation:
                            try:
                                function_response = self.execute_function_call(tool_call)
                                tool_message += f"<tool_response>\n{function_response}\n</tool_response>\n"
                                inference_logger.info(f"Here's the response from the function call: {tool_call.get('name')}\n{function_response}")
                            except Exception as e:
                                inference_logger.info(f"Could not execute function: {e}")
                                tool_message += f"<tool_response>\nThere was an error when executing the function: {tool_call.get('name')}\nHere's the error traceback: {e}\nPlease call this function again with correct arguments within XML tags <tool_call></tool_call>\n</tool_response>\n"
                        else:
                            inference_logger.info(message)
                            tool_message += f"<tool_response>\nThere was an error validating function call against function signature: {tool_call.get('name')}\nHere's the error traceback: {message}\nPlease call this function again with correct arguments within XML tags <tool_call></tool_call>\n</tool_response>\n"
                    prompt.append({"role": "tool", "content": tool_message})

                    depth += 1
                    if depth >= max_depth:
                        print(f"Maximum recursion depth reached ({max_depth}). Stopping recursion.")
                        return

                    completion = self.run_inference(prompt)
                    recursive_loop(prompt, completion, depth)
                elif error_message:
                    inference_logger.info(f"Assistant Message:\n{assistant_message}")
                    tool_message += f"<tool_response>\nThere was an error parsing function calls\n Here's the error stack trace: {error_message}\nPlease call the function again with correct syntax<tool_response>"
                    prompt.append({"role": "tool", "content": tool_message})

                    depth += 1
                    if depth >= max_depth:
                        print(f"Maximum recursion depth reached ({max_depth}). Stopping recursion.")
                        return

                    completion = self.run_inference(prompt)
                    recursive_loop(prompt, completion, depth)
                else:
                    inference_logger.info(f"Assistant Message:\n{assistant_message}")

            recursive_loop(prompt, completion, depth)

        except Exception as e:
            inference_logger.error(f"Exception occurred: {e}")
            raise e

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run recursive function calling loop")
    parser.add_argument("--model_path", type=str, help="Path to the model folder")
    parser.add_argument("--chat_template", type=str, default="chatml", help="Chat template for prompt formatting")
    parser.add_argument("--num_fewshot", type=int, default=None, help="Option to use json mode examples")
    parser.add_argument("--load_in_4bit", type=str, default="False", help="Option to load in 4bit with bitsandbytes")
    parser.add_argument("--query", type=str, default="I need the current stock price of Tesla (TSLA)")
    parser.add_argument("--max_depth", type=int, default=5, help="Maximum number of recursive iteration")
    args = parser.parse_args()

    # specify custom model path
    if args.model_path:
        inference = ModelInference(args.model_path, args.chat_template, args.load_in_4bit)
    else:
        model_path = 'InvestmentResearchAI/LLM-ADE-dev'
        inference = ModelInference(model_path, args.chat_template, args.load_in_4bit)
        
    # Run the model evaluator
    inference.generate_function_call(args.query, args.chat_template, args.num_fewshot, args.max_depth)