Spaces:
Sleeping
Sleeping
File size: 3,630 Bytes
a615d13 de1c7b8 fd872b2 8b384d6 3a830ca 5005937 3a830ca a615d13 5005937 a494749 a615d13 5005937 a615d13 5005937 3a830ca de1c7b8 a615d13 fd872b2 a615d13 fd872b2 a615d13 3a830ca 8b384d6 fd872b2 a615d13 bd328c0 fd872b2 8b384d6 fd872b2 a615d13 3a830ca a615d13 8b384d6 de1c7b8 379c3fe de1c7b8 3a830ca a615d13 3a830ca fd872b2 de1c7b8 8b384d6 abe7082 a615d13 8b384d6 bd328c0 de1c7b8 77428fd a615d13 77428fd a615d13 de1c7b8 379c3fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import torch
import streamlit as st
from transformers import pipeline
from concurrent.futures import ThreadPoolExecutor
# Function to load models only once using Streamlit's cache mechanism
@st.cache_resource(show_spinner="Loading Models...")
def load_models():
device = 0 if torch.cuda.is_available() else -1
base_pipe = pipeline(
"text-generation",
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
device=device,
)
irai_pipe = pipeline(
"text-generation",
model="InvestmentResearchAI/LLM-ADE_tiny-v0.001",
device=device,
)
return base_pipe, irai_pipe
base_pipe, irai_pipe = load_models()
alpaca_template = (
"<|system|>\n"
"{sys}</s>\n"
"<|user|>\n"
"{input_text}</s>\n"
"<|assistant|>\n"
)
chatml_template = (
"<|im_start|>system\n"
"{sys}<|im_end|>\n"
"<|im_start|>user\n"
"{input_text}<|im_end|>\n"
"<|im_start|>assistant\n"
)
system_prompt = "You are an AI assistant trained on an extensive dataset, including technology reports, investment reports, financial texts, and other relevant sources. Please answer the following question based on the knowledge you have acquired during your training. Do not make any assumptions or use information from external sources. If you don't have enough pre-existing knowledge to provide a complete answer, simply respond with \"I don't have enough pre-existing knowledge to comprehensively answer this question.\" If you can partially answer the question based on your training, please provide that partial answer and clarify that it may not be a complete response. Assume today is June 5, 2024, and respond as if you have no knowledge of events after your training data's cut-off date."
executor = ThreadPoolExecutor(max_workers=2)
def generate_base_response(input_text):
formatted_input = alpaca_template.format(sys=system_prompt, input_text=input_text)
result = base_pipe(formatted_input)[0]["generated_text"]
return result.split("<|assistant|>")[1].strip()
def generate_irai_response(input_text):
formatted_input = chatml_template.format(sys=system_prompt, input_text=input_text)
result = irai_pipe(formatted_input)[0]["generated_text"]
return result.split("<|im_start|>assistant")[1].split("<|im_end|>")[0].strip()
@st.cache_data(show_spinner="Generating responses...")
def generate_response(input_text):
try:
future_base = executor.submit(generate_base_response, input_text)
future_irai = executor.submit(generate_irai_response, input_text)
base_resp = future_base.result()
irai_resp = future_irai.result()
except Exception as e:
st.error(f"An error occurred: {e}")
return None, None
return base_resp, irai_resp
st.title("Base Model vs IRAI LLM-ADE")
st.markdown("This is a demonstration of the [LLM-ADE paper](https://arxiv.org/abs/2404.13028) (knowledge cutoff is June 5, 2024)")
user_input = st.text_area("Ask about finance related questions and mega-cap (top 15) stocks!", "")
if st.button("Generate") or user_input:
if user_input:
base_response, irai_response = generate_response(user_input)
col1, col2 = st.columns(2)
with col1:
st.write("### Base Model (Tiny-Llama)")
st.text_area(label="none", value=base_response, height=300, key="base_response", label_visibility="hidden")
with col2:
st.write("### LLM-ADE Enhanced")
st.text_area(label="none", value=irai_response, height=300, key="irai_response", label_visibility="hidden")
else:
st.warning("Please enter some text")
|