File size: 3,630 Bytes
a615d13
de1c7b8
fd872b2
8b384d6
 
3a830ca
 
5005937
3a830ca
a615d13
5005937
 
a494749
a615d13
5005937
 
 
 
a615d13
5005937
3a830ca
 
 
 
de1c7b8
a615d13
fd872b2
a615d13
fd872b2
 
 
 
 
a615d13
 
 
 
 
 
 
 
 
3a830ca
 
8b384d6
fd872b2
a615d13
bd328c0
 
fd872b2
8b384d6
fd872b2
a615d13
3a830ca
a615d13
8b384d6
de1c7b8
379c3fe
de1c7b8
3a830ca
 
 
a615d13
3a830ca
 
 
 
fd872b2
de1c7b8
8b384d6
abe7082
a615d13
 
8b384d6
bd328c0
de1c7b8
77428fd
 
 
a615d13
 
77428fd
a615d13
 
de1c7b8
379c3fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import streamlit as st
from transformers import pipeline
from concurrent.futures import ThreadPoolExecutor


# Function to load models only once using Streamlit's cache mechanism
@st.cache_resource(show_spinner="Loading Models...")
def load_models():
    device = 0 if torch.cuda.is_available() else -1
    base_pipe = pipeline(
        "text-generation",
        model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
        device=device,
    )
    irai_pipe = pipeline(
        "text-generation",
        model="InvestmentResearchAI/LLM-ADE_tiny-v0.001",
        device=device,
    )
    return base_pipe, irai_pipe


base_pipe, irai_pipe = load_models()

alpaca_template = (
    "<|system|>\n"
    "{sys}</s>\n"
    "<|user|>\n"
    "{input_text}</s>\n"
    "<|assistant|>\n"
)

chatml_template = (
    "<|im_start|>system\n"
    "{sys}<|im_end|>\n"
    "<|im_start|>user\n"
    "{input_text}<|im_end|>\n"
    "<|im_start|>assistant\n"
)

system_prompt = "You are an AI assistant trained on an extensive dataset, including technology reports, investment reports, financial texts, and other relevant sources. Please answer the following question based on the knowledge you have acquired during your training. Do not make any assumptions or use information from external sources. If you don't have enough pre-existing knowledge to provide a complete answer, simply respond with \"I don't have enough pre-existing knowledge to comprehensively answer this question.\" If you can partially answer the question based on your training, please provide that partial answer and clarify that it may not be a complete response. Assume today is June 5, 2024, and respond as if you have no knowledge of events after your training data's cut-off date."
executor = ThreadPoolExecutor(max_workers=2)


def generate_base_response(input_text):
    formatted_input = alpaca_template.format(sys=system_prompt, input_text=input_text)
    result = base_pipe(formatted_input)[0]["generated_text"]
    return result.split("<|assistant|>")[1].strip()


def generate_irai_response(input_text):
    formatted_input = chatml_template.format(sys=system_prompt, input_text=input_text)
    result = irai_pipe(formatted_input)[0]["generated_text"]
    return result.split("<|im_start|>assistant")[1].split("<|im_end|>")[0].strip()


@st.cache_data(show_spinner="Generating responses...")
def generate_response(input_text):
    try:
        future_base = executor.submit(generate_base_response, input_text)
        future_irai = executor.submit(generate_irai_response, input_text)
        base_resp = future_base.result()
        irai_resp = future_irai.result()
    except Exception as e:
        st.error(f"An error occurred: {e}")
        return None, None
    return base_resp, irai_resp


st.title("Base Model vs IRAI LLM-ADE")
st.markdown("This is a demonstration of the [LLM-ADE paper](https://arxiv.org/abs/2404.13028) (knowledge cutoff is June 5, 2024)")
user_input = st.text_area("Ask about finance related questions and mega-cap (top 15) stocks!", "")

if st.button("Generate") or user_input:
    if user_input:
        base_response, irai_response = generate_response(user_input)
        col1, col2 = st.columns(2)
        with col1:
            st.write("### Base Model (Tiny-Llama)")
            st.text_area(label="none", value=base_response, height=300, key="base_response", label_visibility="hidden")
        with col2:
            st.write("### LLM-ADE Enhanced")
            st.text_area(label="none", value=irai_response, height=300, key="irai_response", label_visibility="hidden")
    else:
        st.warning("Please enter some text")