Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
model_name = "InvestmentResearchAI/LLM-ADE_tiny-v0.001" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_response(input_text): | |
"""Generate response from the model based on the input text.""" | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
output = model.generate(**inputs, max_length=512, num_return_sequences=1) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
# Streamlit interface | |
st.title("IRAI LLM-ADE Model") | |
user_input = st.text_area("Enter your text here:", "") | |
if st.button("Generate"): | |
if user_input: | |
response = generate_response(user_input) | |
st.text_area("Model Response:", response, height=300) | |
else: | |
st.warning("Please enter some text to generate a response.") |