File size: 6,325 Bytes
c5380c5 d1e5541 c5380c5 d1e5541 c5380c5 8e28673 56a798e 8e28673 c5380c5 6ba01ac 56a798e c5380c5 9b9e94c c5380c5 56a798e c5380c5 56a798e c5380c5 56a798e c5380c5 56a798e c5380c5 56a798e 0676242 56a798e 0676242 c5380c5 56a798e d1e5541 d1ce429 d1e5541 6ba01ac d1e5541 6ba01ac d1e5541 c5380c5 d1e5541 6ba01ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
import requests
import face_recognition
import pickle
import cv2
import pyrebase
import os
# Initialize Firebase using Pyrebase
config = {
"apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
"databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
"authDomain": "socioverse-2025.firebaseapp.com",
"projectId": "socioverse-2025",
"storageBucket": "socioverse-2025.appspot.com",
"messagingSenderId": "689574504641",
"appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
"serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
}
firebase = pyrebase.initialize_app(config)
storage = firebase.storage()
# Define the folder containing face images in the Firebase Storage bucket
storage_folder = "Faces/"
app = FastAPI()
class ImgSave(BaseModel):
image_url: HttpUrl
user_name: str
class ImgInput(BaseModel):
image_url: HttpUrl
class ImgOutput(BaseModel):
user_id: list
class UserSaved(BaseModel):
status: str
class UserDelete(BaseModel):
label: str
class Message(BaseModel):
message: str
class CleanPickle(BaseModel):
confirm: bool
def recognize_face(image_url: HttpUrl) -> ImgOutput:
storage.child().download("Faces/pkl/face_encodings.pkl","face_encodings.pkl")
# Downloading image
response = requests.get(image_url)
with open("examp.jpg", 'wb') as file:
file.write(response.content)
# Load the stored face encodings and labels from the pickle file
with open("face_encodings.pkl", "rb") as file:
data = pickle.load(file)
face_encodings = data["encodings"]
labels = data["labels"]
# Load the new image you want to recognize
new_image = cv2.imread("examp.jpg")
# Find face encodings in the new image
new_face_encodings = face_recognition.face_encodings(new_image)
if len(new_face_encodings) == 0:
print("No faces found in the new image.")
return ImgOutput(label=["unable to detect"])
else:
output_labels = []
for new_face_encoding in new_face_encodings:
# Compare the new face encoding to the stored encodings
results = face_recognition.compare_faces(face_encodings, new_face_encoding)
for i, result in enumerate(results):
if result:
output_labels.append(labels[i])
os.remove("examp.jpg")
if output_labels:
return ImgOutput(user_id=output_labels)
else:
out = ["unable to detect"]
return ImgOutput(user_id=out)
def add_face(image_url: HttpUrl,user_name : str):
# Downloading image
response = requests.get(image_url)
with open("examp.jpg", 'wb') as file:
file.write(response.content)
# Load the stored face encodings and labels from the pickle file
with open("face_encodings.pkl", "rb") as file:
data = pickle.load(file)
face_encodings = data["encodings"]
labels = data["labels"]
if user_name in labels:
return "User already exists"
# Load a new image you want to recognize
new_image = cv2.imread("examp.jpg")
# Convert the BGR image to RGB
rgb_img = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(new_image)[0]
if len(encode) == 0:
return "No face found"
face_encodings.append(encode)
labels.append(user_name)
# Delete the temporary downloaded image
os.remove("examp.jpg")
# Save the encodings and labels to a pickle file
data = {"encodings": face_encodings, "labels": labels}
with open("face_encodings.pkl", "wb") as file:
pickle.dump(data, file)
# Upload the pickle file to Firebase Storage
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
pkl_blob.put("face_encodings.pkl")
return "User Saved"
# Function to delete a user
def delete_user(user_name: str):
# Load the stored face encodings and labels from the pickle file
with open("face_encodings.pkl", "rb") as file:
data = pickle.load(file)
face_encodings = data["encodings"]
labels = data["labels"]
if user_name in labels:
index = labels.index(user_name)
del labels[index]
del face_encodings[index]
# Save the updated encodings and labels to the pickle file
data = {"encodings": face_encodings, "labels": labels}
with open("face_encodings.pkl", "wb") as file:
pickle.dump(data, file)
# Upload the updated pickle file to Firebase Storage
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
pkl_blob.put("face_encodings.pkl")
return {"message": f"User '{user_name}' deleted successfully."}
else:
return {"message": f"User '{user_name}' not found."}
def clean_pickle(confirm: bool):
if confirm:
# Remove the pickle file
if os.path.exists("face_encodings.pkl"):
os.remove("face_encodings.pkl")
# Create an empty pickle file
with open("face_encodings.pkl", "wb") as file:
data = {"encodings": [], "labels": []}
pickle.dump(data, file)
# Upload the empty pickle file to Firebase Storage
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
pkl_blob.put("face_encodings.pkl")
return {"message": "Pickle file cleaned and uploaded successfully."}
else:
return {"message": "Confirmation required to clean the pickle file."}
@app.post('/')
async def scoring_endpoint(item:ImgInput):
result = recognize_face(item.image_url)
return result
@app.post('/user/')
async def scoring_endpoint(item:ImgSave):
results = add_face(item.image_url, item.user_name)
return Message(message=results)
@app.delete('/user_delete/')
async def scoring_endpoint(item: UserDelete):
result = delete_user(item.label)
return Message(message=result["message"])
@app.delete('/clean/')
async def clean_pickle_endpoint(item: CleanPickle):
result = clean_pickle(item.confirm)
return result |