File size: 6,325 Bytes
c5380c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e5541
 
c5380c5
 
 
 
d1e5541
 
 
 
c5380c5
 
 
 
8e28673
56a798e
 
8e28673
c5380c5
6ba01ac
 
 
 
 
 
 
 
 
56a798e
c5380c5
9b9e94c
 
c5380c5
 
 
 
 
 
 
 
 
 
 
 
56a798e
 
 
 
 
 
 
 
 
 
 
c5380c5
56a798e
 
 
c5380c5
56a798e
 
 
c5380c5
56a798e
c5380c5
56a798e
0676242
56a798e
 
0676242
c5380c5
 
 
56a798e
d1e5541
 
 
 
 
 
 
 
 
 
 
d1ce429
 
 
d1e5541
 
 
 
 
 
 
6ba01ac
 
d1e5541
 
 
 
 
 
 
 
 
 
 
 
 
 
6ba01ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e5541
 
c5380c5
 
 
d1e5541
 
 
 
 
6ba01ac
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
import requests
import face_recognition
import pickle
import cv2
import pyrebase
import os


# Initialize Firebase using Pyrebase
config = {
    "apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
    "databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
    "authDomain": "socioverse-2025.firebaseapp.com",
    "projectId": "socioverse-2025",
    "storageBucket": "socioverse-2025.appspot.com",
    "messagingSenderId": "689574504641",
    "appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
    "serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
}

firebase = pyrebase.initialize_app(config)
storage = firebase.storage()

# Define the folder containing face images in the Firebase Storage bucket
storage_folder = "Faces/"


app = FastAPI()

class ImgSave(BaseModel):
    image_url: HttpUrl
    user_name: str

class ImgInput(BaseModel):
    image_url: HttpUrl

class ImgOutput(BaseModel):
    user_id: list

class UserSaved(BaseModel):
    status: str

class UserDelete(BaseModel):
    label: str

class Message(BaseModel):
    message: str

class CleanPickle(BaseModel):
    confirm: bool


def recognize_face(image_url: HttpUrl) -> ImgOutput:

    storage.child().download("Faces/pkl/face_encodings.pkl","face_encodings.pkl")
    # Downloading image
    response = requests.get(image_url)
    with open("examp.jpg", 'wb') as file:
        file.write(response.content)

    # Load the stored face encodings and labels from the pickle file
    with open("face_encodings.pkl", "rb") as file:
        data = pickle.load(file)
        face_encodings = data["encodings"]
        labels = data["labels"]


        # Load the new image you want to recognize
        new_image = cv2.imread("examp.jpg")

        # Find face encodings in the new image
        new_face_encodings = face_recognition.face_encodings(new_image)

        if len(new_face_encodings) == 0:
            print("No faces found in the new image.")
            return ImgOutput(label=["unable to detect"])
        else:
            output_labels = []

            for new_face_encoding in new_face_encodings:
                # Compare the new face encoding to the stored encodings
                results = face_recognition.compare_faces(face_encodings, new_face_encoding)

                for i, result in enumerate(results):
                    if result:
                        output_labels.append(labels[i])

            os.remove("examp.jpg")

            if output_labels:
                return ImgOutput(user_id=output_labels)
            else:
                out = ["unable to detect"]
                return ImgOutput(user_id=out)



def add_face(image_url: HttpUrl,user_name : str):
    # Downloading image
    response = requests.get(image_url)
    with open("examp.jpg", 'wb') as file:
        file.write(response.content)

    # Load the stored face encodings and labels from the pickle file
    with open("face_encodings.pkl", "rb") as file:
        data = pickle.load(file)
        face_encodings = data["encodings"]
        labels = data["labels"]

    if user_name in labels:
        return "User already exists"
        
    # Load a new image you want to recognize
    new_image = cv2.imread("examp.jpg")

    # Convert the BGR image to RGB
    rgb_img = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)

    encode = face_recognition.face_encodings(new_image)[0]
    if len(encode) == 0:
        return "No face found"
    face_encodings.append(encode)
    labels.append(user_name)

    # Delete the temporary downloaded image
    os.remove("examp.jpg")

    # Save the encodings and labels to a pickle file
    data = {"encodings": face_encodings, "labels": labels}
    with open("face_encodings.pkl", "wb") as file:
        pickle.dump(data, file)

    # Upload the pickle file to Firebase Storage
    pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
    pkl_blob.put("face_encodings.pkl")
    return "User Saved"


# Function to delete a user
def delete_user(user_name: str):
    # Load the stored face encodings and labels from the pickle file
    with open("face_encodings.pkl", "rb") as file:
        data = pickle.load(file)
        face_encodings = data["encodings"]
        labels = data["labels"]

    if user_name in labels:
        index = labels.index(user_name)
        del labels[index]
        del face_encodings[index]

        # Save the updated encodings and labels to the pickle file
        data = {"encodings": face_encodings, "labels": labels}
        with open("face_encodings.pkl", "wb") as file:
            pickle.dump(data, file)

        # Upload the updated pickle file to Firebase Storage
        pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
        pkl_blob.put("face_encodings.pkl")

        return {"message": f"User '{user_name}' deleted successfully."}
    else:
        return {"message": f"User '{user_name}' not found."}


def clean_pickle(confirm: bool):
    if confirm:
        # Remove the pickle file
        if os.path.exists("face_encodings.pkl"):
            os.remove("face_encodings.pkl")

        # Create an empty pickle file
        with open("face_encodings.pkl", "wb") as file:
            data = {"encodings": [], "labels": []}
            pickle.dump(data, file)

        # Upload the empty pickle file to Firebase Storage
        pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
        pkl_blob.put("face_encodings.pkl")

        return {"message": "Pickle file cleaned and uploaded successfully."}
    else:
        return {"message": "Confirmation required to clean the pickle file."}


@app.post('/')
async def scoring_endpoint(item:ImgInput):
    result = recognize_face(item.image_url)
    return result


@app.post('/user/')
async def scoring_endpoint(item:ImgSave):
    results = add_face(item.image_url, item.user_name)
    return Message(message=results)


@app.delete('/user_delete/')
async def scoring_endpoint(item: UserDelete):
    result = delete_user(item.label)
    return Message(message=result["message"])


@app.delete('/clean/')
async def clean_pickle_endpoint(item: CleanPickle):
    result = clean_pickle(item.confirm)
    return result