|
from fastapi import FastAPI |
|
from pydantic import BaseModel, HttpUrl |
|
import requests |
|
import face_recognition |
|
import pickle |
|
import cv2 |
|
import pyrebase |
|
import os |
|
|
|
|
|
|
|
config = { |
|
"apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo", |
|
"databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F", |
|
"authDomain": "socioverse-2025.firebaseapp.com", |
|
"projectId": "socioverse-2025", |
|
"storageBucket": "socioverse-2025.appspot.com", |
|
"messagingSenderId": "689574504641", |
|
"appId": "1:689574504641:web:a22f6a2fa343e4221acc40", |
|
"serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json" |
|
} |
|
|
|
firebase = pyrebase.initialize_app(config) |
|
storage = firebase.storage() |
|
|
|
|
|
storage_folder = "Faces/" |
|
|
|
|
|
app = FastAPI() |
|
|
|
class ImgSave(BaseModel): |
|
image_url: HttpUrl |
|
user_name: str |
|
|
|
class ImgInput(BaseModel): |
|
image_url: HttpUrl |
|
|
|
class ImgOutput(BaseModel): |
|
user_id: list |
|
|
|
class UserSaved(BaseModel): |
|
status: str |
|
|
|
class UserDelete(BaseModel): |
|
label: str |
|
|
|
class Message(BaseModel): |
|
message: str |
|
|
|
class CleanPickle(BaseModel): |
|
confirm: bool |
|
|
|
|
|
def recognize_face(image_url: HttpUrl) -> ImgOutput: |
|
|
|
storage.child().download("Faces/pkl/face_encodings.pkl","face_encodings.pkl") |
|
|
|
response = requests.get(image_url) |
|
with open("examp.jpg", 'wb') as file: |
|
file.write(response.content) |
|
|
|
|
|
with open("face_encodings.pkl", "rb") as file: |
|
data = pickle.load(file) |
|
face_encodings = data["encodings"] |
|
labels = data["labels"] |
|
|
|
|
|
|
|
new_image = cv2.imread("examp.jpg") |
|
|
|
|
|
new_face_encodings = face_recognition.face_encodings(new_image) |
|
|
|
if len(new_face_encodings) == 0: |
|
print("No faces found in the new image.") |
|
return ImgOutput(label=["unable to detect"]) |
|
else: |
|
output_labels = [] |
|
|
|
for new_face_encoding in new_face_encodings: |
|
|
|
results = face_recognition.compare_faces(face_encodings, new_face_encoding) |
|
|
|
for i, result in enumerate(results): |
|
if result: |
|
output_labels.append(labels[i]) |
|
|
|
os.remove("examp.jpg") |
|
|
|
if output_labels: |
|
return ImgOutput(user_id=output_labels) |
|
else: |
|
out = ["unable to detect"] |
|
return ImgOutput(user_id=out) |
|
|
|
|
|
|
|
def add_face(image_url: HttpUrl,user_name : str): |
|
|
|
response = requests.get(image_url) |
|
with open("examp.jpg", 'wb') as file: |
|
file.write(response.content) |
|
|
|
|
|
with open("face_encodings.pkl", "rb") as file: |
|
data = pickle.load(file) |
|
face_encodings = data["encodings"] |
|
labels = data["labels"] |
|
|
|
if user_name in labels: |
|
return "User already exists" |
|
|
|
|
|
new_image = cv2.imread("examp.jpg") |
|
|
|
|
|
rgb_img = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB) |
|
|
|
encode = face_recognition.face_encodings(new_image)[0] |
|
if len(encode) == 0: |
|
return "No face found" |
|
face_encodings.append(encode) |
|
labels.append(user_name) |
|
|
|
|
|
os.remove("examp.jpg") |
|
|
|
|
|
data = {"encodings": face_encodings, "labels": labels} |
|
with open("face_encodings.pkl", "wb") as file: |
|
pickle.dump(data, file) |
|
|
|
|
|
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl") |
|
pkl_blob.put("face_encodings.pkl") |
|
return "User Saved" |
|
|
|
|
|
|
|
def delete_user(user_name: str): |
|
|
|
with open("face_encodings.pkl", "rb") as file: |
|
data = pickle.load(file) |
|
face_encodings = data["encodings"] |
|
labels = data["labels"] |
|
|
|
if user_name in labels: |
|
index = labels.index(user_name) |
|
del labels[index] |
|
del face_encodings[index] |
|
|
|
|
|
data = {"encodings": face_encodings, "labels": labels} |
|
with open("face_encodings.pkl", "wb") as file: |
|
pickle.dump(data, file) |
|
|
|
|
|
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl") |
|
pkl_blob.put("face_encodings.pkl") |
|
|
|
return {"message": f"User '{user_name}' deleted successfully."} |
|
else: |
|
return {"message": f"User '{user_name}' not found."} |
|
|
|
|
|
def clean_pickle(confirm: bool): |
|
if confirm: |
|
|
|
if os.path.exists("face_encodings.pkl"): |
|
os.remove("face_encodings.pkl") |
|
|
|
|
|
with open("face_encodings.pkl", "wb") as file: |
|
data = {"encodings": [], "labels": []} |
|
pickle.dump(data, file) |
|
|
|
|
|
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl") |
|
pkl_blob.put("face_encodings.pkl") |
|
|
|
return {"message": "Pickle file cleaned and uploaded successfully."} |
|
else: |
|
return {"message": "Confirmation required to clean the pickle file."} |
|
|
|
|
|
@app.post('/') |
|
async def scoring_endpoint(item:ImgInput): |
|
result = recognize_face(item.image_url) |
|
return result |
|
|
|
|
|
@app.post('/user/') |
|
async def scoring_endpoint(item:ImgSave): |
|
results = add_face(item.image_url, item.user_name) |
|
return Message(message=results) |
|
|
|
|
|
@app.delete('/user_delete/') |
|
async def scoring_endpoint(item: UserDelete): |
|
result = delete_user(item.label) |
|
return Message(message=result["message"]) |
|
|
|
|
|
@app.delete('/clean/') |
|
async def clean_pickle_endpoint(item: CleanPickle): |
|
result = clean_pickle(item.confirm) |
|
return result |