MLFPA / app.py
Jonas Leeb
added plot
6c71bbc
raw
history blame
10.9 kB
import re
import gradio as gr
from scipy.sparse import load_npz
import torch
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import normalize
from transformers import BertTokenizer, BertModel
import numpy as np
from datasets import load_dataset
from gensim.models import KeyedVectors
import plotly.graph_objects as go
from sklearn.decomposition import PCA
class ArxivSearch:
def __init__(self, dataset, embedding="tfidf"):
self.dataset = dataset
self.embedding = embedding
self.documents = []
self.titles = []
self.raw_texts = []
self.arxiv_ids = []
self.last_results = []
self.embedding_dropdown = gr.Dropdown(
choices=["tfidf", "word2vec", "bert"],
value="tfidf",
label="Model"
)
# Add a button to show the 3D plot
self.plot_button = gr.Button("Show 3D Plot")
# Define the interface using Blocks for more flexibility
with gr.Blocks() as self.iface:
gr.Markdown("# arXiv Search Engine")
gr.Markdown("Search arXiv papers by keyword and embedding model.")
with gr.Row():
self.query_box = gr.Textbox(lines=1, placeholder="Enter your search query", label="Query")
self.embedding_dropdown.render()
self.plot_button.render()
with gr.Row():
self.plot_output = gr.Plot()
self.output_md = gr.Markdown()
self.query_box.submit(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
self.embedding_dropdown.change(
self.search_function,
inputs=[self.query_box, self.embedding_dropdown],
outputs=self.output_md
)
self.plot_button.click(
self.plot_3d_embeddings,
inputs=[self.embedding_dropdown],
outputs=self.plot_output
)
# self.iface = gr.Interface(
# fn=self.search_function,
# inputs=[
# gr.Textbox(lines=1, placeholder="Enter your search query"),
# self.embedding_dropdown
# ],
# outputs=gr.Markdown(),
# title="arXiv Search Engine",
# description="Search arXiv papers by keyword and embedding model.",
# )
self.load_data(dataset)
# self.load_model(embedding)
self.load_model('tfidf')
self.load_model('word2vec')
self.load_model('bert')
self.iface.launch()
def load_data(self, dataset):
train_data = dataset["train"]
for item in train_data.select(range(len(train_data))):
text = item["text"]
if not text or len(text.strip()) < 10:
continue
lines = text.splitlines()
title_lines = []
found_arxiv = False
arxiv_id = None
for line in lines:
line_strip = line.strip()
if not found_arxiv and line_strip.lower().startswith("arxiv:"):
found_arxiv = True
match = re.search(r'arxiv:\d{4}\.\d{4,5}v\d', line_strip, flags=re.IGNORECASE)
if match:
arxiv_id = match.group(0).lower()
elif not found_arxiv:
title_lines.append(line_strip)
else:
if line_strip.lower().startswith("abstract"):
break
title = " ".join(title_lines).strip()
self.raw_texts.append(text.strip())
self.titles.append(title)
self.documents.append(text.strip())
self.arxiv_ids.append(arxiv_id)
def keyword_match_ranking(self, query, top_n=5):
query_terms = query.lower().split()
query_indices = [i for i, term in enumerate(self.feature_names) if term in query_terms]
if not query_indices:
return []
scores = []
for doc_idx in range(self.tfidf_matrix.shape[0]):
doc_vector = self.tfidf_matrix[doc_idx]
doc_score = sum(doc_vector[0, i] for i in query_indices)
if doc_score > 0:
scores.append((doc_idx, doc_score))
scores.sort(key=lambda x: x[1], reverse=True)
return scores[:top_n]
def plot_3d_embeddings(self, embedding):
# Example: plot random points, replace with your embeddings
pca = PCA(n_components=3)
results_indices = [i[0] for i in self.last_results]
if embedding == "tfidf":
reduced_data = pca.fit_transform(self.tfidf_matrix[:5000].toarray())
reduced_results_points = pca.transform(self.tfidf_matrix[results_indices].toarray()) if len(results_indices) > 0 else np.empty((0, 3))
elif embedding == "word2vec":
reduced_data = pca.fit_transform(self.word2vec_embeddings[:5000])
reduced_results_points = pca.transform(self.word2vec_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
elif embedding == "bert":
reduced_data = pca.fit_transform(self.bert_embeddings[:5000])
reduced_results_points = pca.transform(self.bert_embeddings[results_indices]) if len(results_indices) > 0 else np.empty((0, 3))
else:
raise ValueError(f"Unsupported embedding type: {embedding}")
trace = go.Scatter3d(
x=reduced_data[:, 0],
y=reduced_data[:, 1],
z=reduced_data[:, 2],
mode='markers',
marker=dict(size=3.5, color='white', opacity=0.4),
)
layout = go.Layout(
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z',
xaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
yaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
zaxis=dict(backgroundcolor='black', color='white', gridcolor='gray', zerolinecolor='gray'),
),
paper_bgcolor='black', # Outside the plotting area
plot_bgcolor='black', # Plotting area
font=dict(color='white') # Axis and legend text
)
if len(reduced_results_points) > 0:
results_trace = go.Scatter3d(
x=reduced_results_points[:, 0],
y=reduced_results_points[:, 1],
z=reduced_results_points[:, 2],
mode='markers',
marker=dict(size=3.5, color='orange', opacity=0.9),
)
fig = go.Figure(data=[trace, results_trace], layout=layout)
else:
fig = go.Figure(data=[trace], layout=layout)
return fig
def word2vec_search(self, query, top_n=5):
tokens = [word for word in query.split() if word in self.wv_model.key_to_index]
if not tokens:
return []
vectors = np.array([self.wv_model[word] for word in tokens])
query_vec = normalize(np.mean(vectors, axis=0).reshape(1, -1))
sims = cosine_similarity(query_vec, self.word2vec_embeddings).flatten()
top_indices = sims.argsort()[::-1][:top_n]
return [(i, sims[i]) for i in top_indices]
def bert_search(self, query, top_n=5):
with torch.no_grad():
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
outputs = self.model(**inputs)
query_vec = normalize(outputs.last_hidden_state[:, 0, :].numpy())
sims = cosine_similarity(query_vec, self.bert_embeddings).flatten()
top_indices = sims.argsort()[::-1][:top_n]
return [(i, sims[i]) for i in top_indices]
def load_model(self, embedding):
if embedding == "tfidf":
self.tfidf_matrix = load_npz("TF-IDF embeddings/tfidf_matrix_train.npz")
with open("TF-IDF embeddings/feature_names.txt", "r") as f:
self.feature_names = [line.strip() for line in f.readlines()]
elif embedding == "word2vec":
# Use trimmed model here
self.word2vec_embeddings = normalize(np.load("Word2Vec embeddings/word2vec_embedding.npz")["word2vec_embedding"])
self.wv_model = KeyedVectors.load("models/word2vec-trimmed.model")
elif embedding == "bert":
self.bert_embeddings = normalize(np.load("BERT embeddings/bert_embedding.npz")["bert_embedding"])
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model = BertModel.from_pretrained('bert-base-uncased')
self.model.eval()
else:
raise ValueError(f"Unsupported embedding type: {embedding}")
def on_model_change(self, change):
new_model = change["new"]
self.embedding = new_model
self.load_model(new_model)
def snippet_before_abstract(self, text):
pattern = re.compile(r'a\s*b\s*s\s*t\s*r\s*a\s*c\s*t|i\s*n\s*t\s*r\s*o\s*d\s*u\s*c\s*t\s*i\s*o\s*n', re.IGNORECASE)
match = pattern.search(text)
if match:
return text[:match.start()].strip()
else:
return text[:100].strip()
def search_function(self, query, embedding):
# Load or switch embedding model here if needed
if embedding == "tfidf":
results = self.keyword_match_ranking(query)
elif embedding == "word2vec":
results = self.word2vec_search(query)
elif embedding == "bert":
results = self.bert_search(query)
else:
return "No results found."
if not results:
self.last_results = []
return "No results found."
if results:
self.last_results = results
output = ""
display_rank = 1
for idx, score in results:
if not self.arxiv_ids[idx]:
continue
link = f"https://arxiv.org/abs/{self.arxiv_ids[idx].replace('arxiv:', '')}"
snippet = self.snippet_before_abstract(self.documents[idx]).replace('\n', '<br>')
output += f"### Document {display_rank}\n"
output += f"[arXiv Link]({link})\n\n"
output += f"<pre>{snippet}</pre>\n\n---\n"
display_rank += 1
return output
if __name__ == "__main__":
dataset = load_dataset("ccdv/arxiv-classification", "no_ref") # replace with your dataset
search_engine = ArxivSearch(dataset, embedding="tfidf") # Initialize with tfidf or any other embedding
search_engine.iface.launch()