Spaces:
Sleeping
Sleeping
DSV3
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
4 |
from transformers import (
|
5 |
AutoTokenizer,
|
6 |
AutoModelForCausalLM,
|
7 |
TextIteratorStreamer,
|
8 |
)
|
9 |
|
10 |
-
# 1) Cargamos el tokenizer y el modelo de deepseek-ai/DeepSeek-R1-Distill-Llama-8B
|
11 |
print("Cargando tokenizer...")
|
12 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
13 |
|
14 |
print("Cargando modelo (puede tardar varios minutos)...")
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
17 |
-
device_map="auto", #
|
18 |
-
torch_dtype=torch.float16 #
|
19 |
)
|
20 |
model.eval()
|
21 |
|
@@ -28,14 +28,12 @@ def respond(
|
|
28 |
top_p: float,
|
29 |
):
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
"""
|
36 |
-
|
37 |
-
# Construimos un prompt concatenando 'system_message', 'history' y el nuevo 'message'
|
38 |
-
# Esto es un ejemplo de formateo sencillo. Ajusta según tu preferencia de estilo chat.
|
39 |
prompt = f"[SYSTEM] {system_message}\n"
|
40 |
for (usr, bot) in history:
|
41 |
if usr:
|
@@ -44,14 +42,11 @@ def respond(
|
|
44 |
prompt += f"[ASSISTANT] {bot}\n"
|
45 |
prompt += f"[USER] {message}\n[ASSISTANT]"
|
46 |
|
47 |
-
# Usamos TextIteratorStreamer para obtener tokens a medida que se generan
|
48 |
streamer = TextIteratorStreamer(
|
49 |
tokenizer=tokenizer,
|
50 |
skip_special_tokens=True
|
51 |
)
|
52 |
|
53 |
-
# Preparamos argumentos para model.generate
|
54 |
-
# (similar a pipeline pero de bajo nivel)
|
55 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
56 |
generation_kwargs = dict(
|
57 |
**inputs,
|
@@ -59,24 +54,22 @@ def respond(
|
|
59 |
max_new_tokens=max_tokens,
|
60 |
temperature=temperature,
|
61 |
top_p=top_p,
|
62 |
-
do_sample=True,
|
63 |
-
# repetition_penalty=1.0, # ajusta si lo deseas
|
64 |
)
|
65 |
|
66 |
-
#
|
67 |
-
generation_thread =
|
68 |
target=model.generate,
|
69 |
kwargs=generation_kwargs
|
70 |
)
|
71 |
generation_thread.start()
|
72 |
|
73 |
-
# Leemos tokens a medida que se generan y yield
|
74 |
output_text = ""
|
75 |
for new_token in streamer:
|
76 |
output_text += new_token
|
77 |
yield output_text
|
78 |
|
79 |
-
# Interfaz con ChatInterface
|
80 |
demo = gr.ChatInterface(
|
81 |
fn=respond,
|
82 |
additional_inputs=[
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
import threading
|
5 |
from transformers import (
|
6 |
AutoTokenizer,
|
7 |
AutoModelForCausalLM,
|
8 |
TextIteratorStreamer,
|
9 |
)
|
10 |
|
|
|
11 |
print("Cargando tokenizer...")
|
12 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
|
13 |
|
14 |
print("Cargando modelo (puede tardar varios minutos)...")
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
17 |
+
device_map="auto", # Usa GPU si está disponible
|
18 |
+
torch_dtype=torch.float16 # FP16 en GPU; en CPU quizá float32
|
19 |
)
|
20 |
model.eval()
|
21 |
|
|
|
28 |
top_p: float,
|
29 |
):
|
30 |
"""
|
31 |
+
Construimos el prompt a partir de:
|
32 |
+
- system_message
|
33 |
+
- history (lista de (user, assistant))
|
34 |
+
- message actual
|
35 |
+
Generamos tokens progresivamente con TextIteratorStreamer.
|
36 |
"""
|
|
|
|
|
|
|
37 |
prompt = f"[SYSTEM] {system_message}\n"
|
38 |
for (usr, bot) in history:
|
39 |
if usr:
|
|
|
42 |
prompt += f"[ASSISTANT] {bot}\n"
|
43 |
prompt += f"[USER] {message}\n[ASSISTANT]"
|
44 |
|
|
|
45 |
streamer = TextIteratorStreamer(
|
46 |
tokenizer=tokenizer,
|
47 |
skip_special_tokens=True
|
48 |
)
|
49 |
|
|
|
|
|
50 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
51 |
generation_kwargs = dict(
|
52 |
**inputs,
|
|
|
54 |
max_new_tokens=max_tokens,
|
55 |
temperature=temperature,
|
56 |
top_p=top_p,
|
57 |
+
do_sample=True,
|
|
|
58 |
)
|
59 |
|
60 |
+
# Usamos threading.Thread en lugar de torch.Thread
|
61 |
+
generation_thread = threading.Thread(
|
62 |
target=model.generate,
|
63 |
kwargs=generation_kwargs
|
64 |
)
|
65 |
generation_thread.start()
|
66 |
|
67 |
+
# Leemos tokens a medida que se generan y los enviamos a Gradio (yield)
|
68 |
output_text = ""
|
69 |
for new_token in streamer:
|
70 |
output_text += new_token
|
71 |
yield output_text
|
72 |
|
|
|
73 |
demo = gr.ChatInterface(
|
74 |
fn=respond,
|
75 |
additional_inputs=[
|