File size: 4,995 Bytes
92a085a
 
 
 
f076a08
92a085a
f076a08
900c0ad
 
f076a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900c0ad
f076a08
900c0ad
 
 
 
 
 
 
 
 
f076a08
 
900c0ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f076a08
900c0ad
 
 
 
f076a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92a085a
900c0ad
 
 
 
 
 
92a085a
900c0ad
 
 
 
 
 
 
 
 
 
 
92a085a
900c0ad
 
92a085a
f076a08
92a085a
f076a08
 
 
 
 
 
 
 
 
 
 
92a085a
 
900c0ad
f076a08
92a085a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from io import StringIO
import openpyxl
from st_aggrid import AgGrid, GridUpdateMode
from st_aggrid.grid_options_builder import GridOptionsBuilder

def load_data(file):
    file_extension = file.name.split('.')[-1].lower()
    if file_extension == 'csv':
        data = pd.read_csv(file)
    elif file_extension in ['xls', 'xlsx']:
        data = pd.read_excel(file)
    else:
        st.error("Unsupported file format. Please upload a CSV, XLS, or XLSX file.")
        return None
    return data

def manual_data_entry():
    st.subheader("Manual Data Entry")
    col_names = st.text_input("Enter column names separated by commas:").split(',')
    col_names = [name.strip() for name in col_names if name.strip()]
    
    if col_names:
        num_rows = st.number_input("Enter number of rows:", min_value=1, value=5)
        data = pd.DataFrame(columns=col_names, index=range(num_rows))
        
        gd = GridOptionsBuilder.from_dataframe(data)
        gd.configure_default_column(editable=True)
        gridoptions = gd.build()
        
        grid_table = AgGrid(data, gridOptions=gridoptions, 
                            update_mode=GridUpdateMode.VALUE_CHANGED, 
                            height=400)
        
        return grid_table['data']
    return None

def preprocess_data(data):
    st.subheader("Data Preprocessing")
    
    # Handle missing values
    if data.isnull().sum().sum() > 0:
        st.write("Handling missing values:")
        for column in data.columns:
            if data[column].isnull().sum() > 0:
                method = st.selectbox(f"Choose method for {column}:", 
                                      ["Drop", "Fill with mean", "Fill with median", "Fill with mode"])
                if method == "Drop":
                    data = data.dropna(subset=[column])
                elif method == "Fill with mean":
                    data[column].fillna(data[column].mean(), inplace=True)
                elif method == "Fill with median":
                    data[column].fillna(data[column].median(), inplace=True)
                elif method == "Fill with mode":
                    data[column].fillna(data[column].mode()[0], inplace=True)
    
    # Convert data types
    for column in data.columns:
        if data[column].dtype == 'object':
            try:
                data[column] = pd.to_numeric(data[column])
                st.write(f"Converted {column} to numeric.")
            except ValueError:
                st.write(f"Kept {column} as categorical.")
    
    return data

def perform_analysis(data):
    st.header("Exploratory Data Analysis")
    
    # Summary statistics
    st.write("Summary Statistics:")
    st.write(data.describe())

    # Correlation heatmap
    st.write("Correlation Heatmap:")
    numeric_data = data.select_dtypes(include=['float64', 'int64'])
    if not numeric_data.empty:
        fig, ax = plt.subplots(figsize=(10, 8))
        sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm', ax=ax)
        st.pyplot(fig)
    else:
        st.write("No numeric columns available for correlation heatmap.")

    # Pairplot
    st.write("Pairplot:")
    if not numeric_data.empty:
        fig = sns.pairplot(numeric_data)
        st.pyplot(fig)
    else:
        st.write("No numeric columns available for pairplot.")

    # Histogram
    st.write("Histograms:")
    for column in numeric_data.columns:
        fig, ax = plt.subplots()
        sns.histplot(data[column], kde=True, ax=ax)
        st.pyplot(fig)

    # Box plots for numerical columns
    st.write("Box Plots:")
    for column in numeric_data.columns:
        fig, ax = plt.subplots()
        sns.boxplot(data=data, y=column, ax=ax)
        st.pyplot(fig)

    # Bar plots for categorical columns
    categorical_columns = data.select_dtypes(include=['object']).columns
    if not categorical_columns.empty:
        st.write("Bar Plots for Categorical Variables:")
        for column in categorical_columns:
            fig, ax = plt.subplots()
            data[column].value_counts().plot(kind='bar', ax=ax)
            plt.title(f"Distribution of {column}")
            plt.xlabel(column)
            plt.ylabel("Count")
            st.pyplot(fig)

def main():
    st.title("Interactive EDA Toolkit")

    data_input_method = st.radio("Choose data input method:", ("Upload File", "Manual Entry"))
    
    if data_input_method == "Upload File":
        uploaded_file = st.file_uploader("Choose a CSV, XLS, or XLSX file", type=["csv", "xls", "xlsx"])
        if uploaded_file is not None:
            data = load_data(uploaded_file)
        else:
            data = None
    else:
        data = manual_data_entry()
    
    if data is not None:
        st.write("Data Preview:")
        st.write(data.head())

        data = preprocess_data(data)
        perform_analysis(data)

if __name__ == "__main__":
    main()