Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from io import StringIO | |
import openpyxl | |
from st_aggrid import AgGrid, GridUpdateMode | |
from st_aggrid.grid_options_builder import GridOptionsBuilder | |
def load_data(file): | |
file_extension = file.name.split('.')[-1].lower() | |
if file_extension == 'csv': | |
data = pd.read_csv(file) | |
elif file_extension in ['xls', 'xlsx']: | |
data = pd.read_excel(file) | |
else: | |
st.error("Unsupported file format. Please upload a CSV, XLS, or XLSX file.") | |
return None | |
return data | |
def manual_data_entry(): | |
st.subheader("Manual Data Entry") | |
col_names = st.text_input("Enter column names separated by commas:").split(',') | |
col_names = [name.strip() for name in col_names if name.strip()] | |
if col_names: | |
num_rows = st.number_input("Enter number of rows:", min_value=1, value=5) | |
data = pd.DataFrame(columns=col_names, index=range(num_rows)) | |
gd = GridOptionsBuilder.from_dataframe(data) | |
gd.configure_default_column(editable=True) | |
gridoptions = gd.build() | |
grid_table = AgGrid(data, gridOptions=gridoptions, | |
update_mode=GridUpdateMode.VALUE_CHANGED, | |
height=400) | |
return grid_table['data'] | |
return None | |
def preprocess_data(data): | |
st.subheader("Data Preprocessing") | |
# Handle missing values | |
if data.isnull().sum().sum() > 0: | |
st.write("Handling missing values:") | |
for column in data.columns: | |
if data[column].isnull().sum() > 0: | |
method = st.selectbox(f"Choose method for {column}:", | |
["Drop", "Fill with mean", "Fill with median", "Fill with mode"]) | |
if method == "Drop": | |
data = data.dropna(subset=[column]) | |
elif method == "Fill with mean": | |
data[column].fillna(data[column].mean(), inplace=True) | |
elif method == "Fill with median": | |
data[column].fillna(data[column].median(), inplace=True) | |
elif method == "Fill with mode": | |
data[column].fillna(data[column].mode()[0], inplace=True) | |
# Convert data types | |
for column in data.columns: | |
if data[column].dtype == 'object': | |
try: | |
data[column] = pd.to_numeric(data[column]) | |
st.write(f"Converted {column} to numeric.") | |
except ValueError: | |
st.write(f"Kept {column} as categorical.") | |
return data | |
def perform_analysis(data): | |
st.header("Exploratory Data Analysis") | |
# Summary statistics | |
st.write("Summary Statistics:") | |
st.write(data.describe()) | |
# Correlation heatmap | |
st.write("Correlation Heatmap:") | |
numeric_data = data.select_dtypes(include=['float64', 'int64']) | |
if not numeric_data.empty: | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm', ax=ax) | |
st.pyplot(fig) | |
else: | |
st.write("No numeric columns available for correlation heatmap.") | |
# Pairplot | |
st.write("Pairplot:") | |
if not numeric_data.empty: | |
fig = sns.pairplot(numeric_data) | |
st.pyplot(fig) | |
else: | |
st.write("No numeric columns available for pairplot.") | |
# Histogram | |
st.write("Histograms:") | |
for column in numeric_data.columns: | |
fig, ax = plt.subplots() | |
sns.histplot(data[column], kde=True, ax=ax) | |
st.pyplot(fig) | |
# Box plots for numerical columns | |
st.write("Box Plots:") | |
for column in numeric_data.columns: | |
fig, ax = plt.subplots() | |
sns.boxplot(data=data, y=column, ax=ax) | |
st.pyplot(fig) | |
# Bar plots for categorical columns | |
categorical_columns = data.select_dtypes(include=['object']).columns | |
if not categorical_columns.empty: | |
st.write("Bar Plots for Categorical Variables:") | |
for column in categorical_columns: | |
fig, ax = plt.subplots() | |
data[column].value_counts().plot(kind='bar', ax=ax) | |
plt.title(f"Distribution of {column}") | |
plt.xlabel(column) | |
plt.ylabel("Count") | |
st.pyplot(fig) | |
def main(): | |
st.title("Interactive EDA Toolkit") | |
data_input_method = st.radio("Choose data input method:", ("Upload File", "Manual Entry")) | |
if data_input_method == "Upload File": | |
uploaded_file = st.file_uploader("Choose a CSV, XLS, or XLSX file", type=["csv", "xls", "xlsx"]) | |
if uploaded_file is not None: | |
data = load_data(uploaded_file) | |
else: | |
data = None | |
else: | |
data = manual_data_entry() | |
if data is not None: | |
st.write("Data Preview:") | |
st.write(data.head()) | |
data = preprocess_data(data) | |
perform_analysis(data) | |
if __name__ == "__main__": | |
main() |