PPPDC_example / app.py
JUNGU's picture
Update app.py
900c0ad verified
raw
history blame
5 kB
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from io import StringIO
import openpyxl
from st_aggrid import AgGrid, GridUpdateMode
from st_aggrid.grid_options_builder import GridOptionsBuilder
def load_data(file):
file_extension = file.name.split('.')[-1].lower()
if file_extension == 'csv':
data = pd.read_csv(file)
elif file_extension in ['xls', 'xlsx']:
data = pd.read_excel(file)
else:
st.error("Unsupported file format. Please upload a CSV, XLS, or XLSX file.")
return None
return data
def manual_data_entry():
st.subheader("Manual Data Entry")
col_names = st.text_input("Enter column names separated by commas:").split(',')
col_names = [name.strip() for name in col_names if name.strip()]
if col_names:
num_rows = st.number_input("Enter number of rows:", min_value=1, value=5)
data = pd.DataFrame(columns=col_names, index=range(num_rows))
gd = GridOptionsBuilder.from_dataframe(data)
gd.configure_default_column(editable=True)
gridoptions = gd.build()
grid_table = AgGrid(data, gridOptions=gridoptions,
update_mode=GridUpdateMode.VALUE_CHANGED,
height=400)
return grid_table['data']
return None
def preprocess_data(data):
st.subheader("Data Preprocessing")
# Handle missing values
if data.isnull().sum().sum() > 0:
st.write("Handling missing values:")
for column in data.columns:
if data[column].isnull().sum() > 0:
method = st.selectbox(f"Choose method for {column}:",
["Drop", "Fill with mean", "Fill with median", "Fill with mode"])
if method == "Drop":
data = data.dropna(subset=[column])
elif method == "Fill with mean":
data[column].fillna(data[column].mean(), inplace=True)
elif method == "Fill with median":
data[column].fillna(data[column].median(), inplace=True)
elif method == "Fill with mode":
data[column].fillna(data[column].mode()[0], inplace=True)
# Convert data types
for column in data.columns:
if data[column].dtype == 'object':
try:
data[column] = pd.to_numeric(data[column])
st.write(f"Converted {column} to numeric.")
except ValueError:
st.write(f"Kept {column} as categorical.")
return data
def perform_analysis(data):
st.header("Exploratory Data Analysis")
# Summary statistics
st.write("Summary Statistics:")
st.write(data.describe())
# Correlation heatmap
st.write("Correlation Heatmap:")
numeric_data = data.select_dtypes(include=['float64', 'int64'])
if not numeric_data.empty:
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm', ax=ax)
st.pyplot(fig)
else:
st.write("No numeric columns available for correlation heatmap.")
# Pairplot
st.write("Pairplot:")
if not numeric_data.empty:
fig = sns.pairplot(numeric_data)
st.pyplot(fig)
else:
st.write("No numeric columns available for pairplot.")
# Histogram
st.write("Histograms:")
for column in numeric_data.columns:
fig, ax = plt.subplots()
sns.histplot(data[column], kde=True, ax=ax)
st.pyplot(fig)
# Box plots for numerical columns
st.write("Box Plots:")
for column in numeric_data.columns:
fig, ax = plt.subplots()
sns.boxplot(data=data, y=column, ax=ax)
st.pyplot(fig)
# Bar plots for categorical columns
categorical_columns = data.select_dtypes(include=['object']).columns
if not categorical_columns.empty:
st.write("Bar Plots for Categorical Variables:")
for column in categorical_columns:
fig, ax = plt.subplots()
data[column].value_counts().plot(kind='bar', ax=ax)
plt.title(f"Distribution of {column}")
plt.xlabel(column)
plt.ylabel("Count")
st.pyplot(fig)
def main():
st.title("Interactive EDA Toolkit")
data_input_method = st.radio("Choose data input method:", ("Upload File", "Manual Entry"))
if data_input_method == "Upload File":
uploaded_file = st.file_uploader("Choose a CSV, XLS, or XLSX file", type=["csv", "xls", "xlsx"])
if uploaded_file is not None:
data = load_data(uploaded_file)
else:
data = None
else:
data = manual_data_entry()
if data is not None:
st.write("Data Preview:")
st.write(data.head())
data = preprocess_data(data)
perform_analysis(data)
if __name__ == "__main__":
main()