Q
File size: 1,411 Bytes
09cfd96
 
998b69c
 
f5413de
 
54a242a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr

model=gr.load("models/Qwen/Qwen2-7B").launch()
# Load the model only once at startup
def predict(input_data):
    return model(input_data)

# Inference pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)

# Chat function
def chat_with_model(prompt, max_tokens=100):
    responses = generator(prompt, max_length=max_tokens, do_sample=True, temperature=0.7, top_k=50)
    return responses[0]["generated_text"]

# Gradio Interface
with gr.Blocks() as chat_interface:
    gr.Markdown("# πŸš€ Super Fast ChatGPT")
    with gr.Row():
        with gr.Column():
            user_input = gr.Textbox(label="Enter your message", placeholder="Type something...")
            max_tokens = gr.Slider(50, 300, value=100, step=10, label="Max Tokens")
            send_button = gr.Button("Send")
        with gr.Column():
            chat_output = gr.Textbox(label="ChatGPT's Response", placeholder="Response will appear here...", interactive=False)

    send_button.click(fn=chat_with_model, inputs=[user_input, max_tokens], outputs=chat_output)
from transformers import BitsAndBytesConfig
quant_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, quantization_config=quant_config)

# Launch the app
chat_interface.launch(share=False, server_name="0.0.0.0", server_port=7860)