Spaces:
Sleeping
Sleeping
File size: 1,411 Bytes
09cfd96 998b69c f5413de 54a242a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
model=gr.load("models/Qwen/Qwen2-7B").launch()
# Load the model only once at startup
def predict(input_data):
return model(input_data)
# Inference pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
# Chat function
def chat_with_model(prompt, max_tokens=100):
responses = generator(prompt, max_length=max_tokens, do_sample=True, temperature=0.7, top_k=50)
return responses[0]["generated_text"]
# Gradio Interface
with gr.Blocks() as chat_interface:
gr.Markdown("# π Super Fast ChatGPT")
with gr.Row():
with gr.Column():
user_input = gr.Textbox(label="Enter your message", placeholder="Type something...")
max_tokens = gr.Slider(50, 300, value=100, step=10, label="Max Tokens")
send_button = gr.Button("Send")
with gr.Column():
chat_output = gr.Textbox(label="ChatGPT's Response", placeholder="Response will appear here...", interactive=False)
send_button.click(fn=chat_with_model, inputs=[user_input, max_tokens], outputs=chat_output)
from transformers import BitsAndBytesConfig
quant_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, quantization_config=quant_config)
# Launch the app
chat_interface.launch(share=False, server_name="0.0.0.0", server_port=7860)
|