Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import Trainer, TrainingArguments | |
model_name = "HuggingFaceH4/zephyr-7b-beta" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
dataset = load_dataset("json", data_files="data.json", split = "train") | |
# Tokenize the dataset | |
def preprocess_function(examples): | |
inputs = [example['input'] for example in examples] | |
targets = [examples['output'] for example in examples] | |
model_inputs = tokenizer(inputs, padding=True, truncation=True) | |
labels = tokenizer(targets, padding=True, truncation=True).input_ids | |
model_inputs['labels'] = labels | |
return model_inputs | |
tokenized_datasets = dataset.map(preprocess_function, batched = True) | |
training_args = TrainingArguments( | |
output_dir = "./results", | |
evaluation_strategy = "epoch", | |
learning_rate = 2e-5, | |
per_device_train_batch_size = 3, | |
weight_decay = 0.01, | |
) | |
trainer = Trainer( | |
model = model, | |
args = training_args, | |
train_dataset = tokenized_datasets["train"], | |
eval_dataset = tokenized_datasets["validation"], | |
) | |
# Start fine-tuning | |
trainer.train() | |
trainer.evaluate() | |
model.save_pretrained("./fine_tuned_model") | |
tokenizer.save_pretrained("./fine_tuned_model") | |
client = InferenceClient("./fine_tuned_model") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |