File size: 4,252 Bytes
9431860
2a991e1
 
 
 
 
 
083a014
2a991e1
 
 
 
 
 
083a014
2a991e1
 
 
 
 
 
 
083a014
2a991e1
 
 
 
 
 
 
083a014
2a991e1
 
 
 
 
 
 
236b4e0
2a991e1
 
 
 
 
 
 
 
 
58ddc5a
c71ebe4
 
2a991e1
c71ebe4
 
2a991e1
 
 
 
 
c71ebe4
9431860
2a991e1
 
 
 
9431860
c71ebe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
083a014
2a991e1
c71ebe4
a1bccac
2a991e1
236b4e0
c71ebe4
 
 
2a991e1
236b4e0
c71ebe4
 
 
2a991e1
236b4e0
c71ebe4
2a991e1
 
236b4e0
2a991e1
 
236b4e0
2a991e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import gradio as gr
from moviepy.video.io.VideoFileClip import VideoFileClip
from pydub import AudioSegment
import whisper
from transformers import pipeline, MarianMTModel, MarianTokenizer
import yt_dlp as youtube_dl

def download_youtube_video(url):
    try:
        os.system(f"yt-dlp -o video.mp4 {url}")
        return "video.mp4"
    except Exception as e:
        return str(e)

def extract_audio(video_path):
    try:
        audio = AudioSegment.from_file(video_path)
        audio.export("extracted_audio.mp3", format="mp3")
        return "extracted_audio.mp3"
    except Exception as e:
        return str(e)

def transcribe_audio(audio_path):
    try:
        model = whisper.load_model("base")
        result = model.transcribe(audio_path)
        return result['text']
    except Exception as e:
        return str(e)

def summarize_text(text):
    try:
        summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
        return summary[0]['summary_text']
    except Exception as e:
        return str(e)

def translate_text(text, tgt_lang="es"):
    try:
        model_name = f"Helsinki-NLP/opus-mt-en-{tgt_lang}"
        tokenizer = MarianTokenizer.from_pretrained(model_name)
        model = MarianMTModel.from_pretrained(model_name)
        translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True))
        return tokenizer.decode(translated[0], skip_special_tokens=True)
    except Exception as e:
        return str(e)

def process_video(video_file, youtube_url, video_source):
    if video_source == "Local Video" and video_file:
        video_path = video_file.name
    elif video_source == "YouTube" and youtube_url:
        video_path = download_youtube_video(youtube_url)
    else:
        return "No valid input provided."
    
    audio_path = extract_audio(video_path)
    transcription = transcribe_audio(audio_path)
    return transcription, video_path

def summarize_and_translate(text, lang):
    summary = summarize_text(text)
    translation = translate_text(summary, lang)
    return summary, translation

with gr.Blocks(css="""
    .glass-card {
        background: rgba(255, 255, 255, 0.1);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(255, 255, 255, 0.2);
        border-radius: 20px;
        padding: 2rem;
        transition: transform 0.3s ease, box-shadow 0.3s ease;
    }
    .btn-blue {
        background-color: #007BFF;
        color: white;
        border-radius: 10px;
    }
    .btn-blue:hover {
        background-color: #0056b3;
    }
    .gradient-font {
        background: linear-gradient(90deg, #ff7f50, #ff6347);
        -webkit-background-clip: text;
        color: transparent;
    }
""") as app:
    gr.Markdown("<h1 class='gradient-font'>🎥 Smart Video-to-Text Summarization App</h1>")
    
    with gr.Row():
        video_source = gr.Radio(["Local Video", "YouTube"], label="Choose Video Source", value="Local Video")
        video_upload = gr.File(label="Upload Video File", type="filepath")
        youtube_link = gr.Textbox(label="YouTube URL")
    
    video_display = gr.Video(label="Processed Video", visible=False)

    process_button = gr.Button("🚀 Process Video", elem_classes=["btn-blue"])
    transcription_output = gr.Textbox(label="Transcription", interactive=False)
    
    process_button.click(process_video, inputs=[video_upload, youtube_link, video_source], outputs=[transcription_output, video_display])
    
    summarize_button = gr.Button("📝 Summarize Text", elem_classes=["btn-blue"])
    summary_output = gr.Textbox(label="Summary", interactive=False)
    
    translate_button = gr.Button("🌍 Translate Summary", elem_classes=["btn-blue"])
    language_dropdown = gr.Dropdown(choices=["es", "fr", "de", "zh"], label="Select Translation Language")
    translated_output = gr.Textbox(label="Translated Summary", interactive=False)
    
    summarize_button.click(summarize_text, inputs=transcription_output, outputs=summary_output)
    translate_button.click(summarize_and_translate, inputs=[transcription_output, language_dropdown], outputs=[summary_output, translated_output])
    
app.launch()