Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,21 +4,23 @@ import yt_dlp
|
|
4 |
import os
|
5 |
import subprocess
|
6 |
import json
|
7 |
-
from threading import Thread
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
-
import spaces
|
10 |
import time
|
11 |
import langdetect
|
12 |
import uuid
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
|
|
17 |
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
20 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).
|
21 |
-
model = model.eval()
|
22 |
print("Model successfully loaded.")
|
23 |
|
24 |
def generate_unique_filename(extension):
|
@@ -33,6 +35,7 @@ def cleanup_files(*files):
|
|
33 |
def download_youtube_audio(url):
|
34 |
print(f"Downloading audio from YouTube: {url}")
|
35 |
output_path = generate_unique_filename(".wav")
|
|
|
36 |
ydl_opts = {
|
37 |
'format': 'bestaudio/best',
|
38 |
'postprocessors': [{
|
@@ -40,10 +43,13 @@ def download_youtube_audio(url):
|
|
40 |
'preferredcodec': 'wav',
|
41 |
}],
|
42 |
'outtmpl': output_path,
|
43 |
-
'keepvideo': True,
|
44 |
}
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
if os.path.exists(output_path + ".wav"):
|
49 |
os.rename(output_path + ".wav", output_path)
|
@@ -53,6 +59,7 @@ def download_youtube_audio(url):
|
|
53 |
def transcribe_audio(file_path):
|
54 |
print(f"Starting transcription of file: {file_path}")
|
55 |
temp_audio = None
|
|
|
56 |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
57 |
print("Video file detected. Extracting audio using ffmpeg...")
|
58 |
temp_audio = generate_unique_filename(".wav")
|
@@ -70,7 +77,11 @@ def transcribe_audio(file_path):
|
|
70 |
"--timestamp", "chunk",
|
71 |
"--transcript-path", output_file
|
72 |
]
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
with open(output_file, "r") as f:
|
76 |
transcription = json.load(f)
|
@@ -88,13 +99,20 @@ def generate_summary_stream(transcription):
|
|
88 |
prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:
|
89 |
{transcription[:300000]}..."""
|
90 |
|
91 |
-
|
|
|
|
|
|
|
92 |
return response
|
93 |
|
94 |
def process_youtube(url):
|
95 |
if not url:
|
96 |
return "Please enter a YouTube URL.", None
|
|
|
97 |
audio_file = download_youtube_audio(url)
|
|
|
|
|
|
|
98 |
transcription = transcribe_audio(audio_file)
|
99 |
cleanup_files(audio_file)
|
100 |
return transcription, None
|
@@ -126,4 +144,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
126 |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
127 |
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|
128 |
|
129 |
-
demo.launch()
|
|
|
4 |
import os
|
5 |
import subprocess
|
6 |
import json
|
|
|
|
|
|
|
7 |
import time
|
8 |
import langdetect
|
9 |
import uuid
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
|
12 |
+
# Load Hugging Face Token
|
13 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
|
15 |
+
print("Starting the program...")
|
16 |
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
17 |
+
|
18 |
+
# Check if CUDA is available
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
print(f"Using device: {device}")
|
21 |
+
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, trust_remote_code=True).to(device).eval()
|
|
|
24 |
print("Model successfully loaded.")
|
25 |
|
26 |
def generate_unique_filename(extension):
|
|
|
35 |
def download_youtube_audio(url):
|
36 |
print(f"Downloading audio from YouTube: {url}")
|
37 |
output_path = generate_unique_filename(".wav")
|
38 |
+
|
39 |
ydl_opts = {
|
40 |
'format': 'bestaudio/best',
|
41 |
'postprocessors': [{
|
|
|
43 |
'preferredcodec': 'wav',
|
44 |
}],
|
45 |
'outtmpl': output_path,
|
|
|
46 |
}
|
47 |
+
|
48 |
+
try:
|
49 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
50 |
+
ydl.download([url])
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error downloading audio: {str(e)}"
|
53 |
|
54 |
if os.path.exists(output_path + ".wav"):
|
55 |
os.rename(output_path + ".wav", output_path)
|
|
|
59 |
def transcribe_audio(file_path):
|
60 |
print(f"Starting transcription of file: {file_path}")
|
61 |
temp_audio = None
|
62 |
+
|
63 |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
64 |
print("Video file detected. Extracting audio using ffmpeg...")
|
65 |
temp_audio = generate_unique_filename(".wav")
|
|
|
77 |
"--timestamp", "chunk",
|
78 |
"--transcript-path", output_file
|
79 |
]
|
80 |
+
|
81 |
+
try:
|
82 |
+
subprocess.run(command, check=True)
|
83 |
+
except Exception as e:
|
84 |
+
return f"Error in transcription: {str(e)}"
|
85 |
|
86 |
with open(output_file, "r") as f:
|
87 |
transcription = json.load(f)
|
|
|
99 |
prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:
|
100 |
{transcription[:300000]}..."""
|
101 |
|
102 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
103 |
+
output_ids = model.generate(input_ids, max_length=500)
|
104 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
105 |
+
|
106 |
return response
|
107 |
|
108 |
def process_youtube(url):
|
109 |
if not url:
|
110 |
return "Please enter a YouTube URL.", None
|
111 |
+
|
112 |
audio_file = download_youtube_audio(url)
|
113 |
+
if "Error" in audio_file:
|
114 |
+
return audio_file, None
|
115 |
+
|
116 |
transcription = transcribe_audio(audio_file)
|
117 |
cleanup_files(audio_file)
|
118 |
return transcription, None
|
|
|
144 |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
145 |
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|
146 |
|
147 |
+
demo.launch()
|