File size: 8,385 Bytes
0348ce3
 
859a24c
 
0348ce3
 
 
 
 
859a24c
 
0348ce3
 
 
 
 
 
 
 
859a24c
 
 
 
0348ce3
859a24c
0348ce3
859a24c
0348ce3
859a24c
 
0348ce3
859a24c
0348ce3
 
 
 
859a24c
 
 
0348ce3
 
 
859a24c
 
0348ce3
859a24c
0348ce3
859a24c
 
0348ce3
 
 
 
 
859a24c
0348ce3
859a24c
0348ce3
 
 
859a24c
0348ce3
 
859a24c
0348ce3
859a24c
0348ce3
859a24c
 
0348ce3
859a24c
 
 
0348ce3
859a24c
0348ce3
 
 
 
 
 
 
 
 
8f3010c
859a24c
 
0348ce3
859a24c
 
0348ce3
859a24c
 
0348ce3
859a24c
 
0348ce3
 
 
 
 
 
 
 
 
 
 
 
859a24c
 
 
0348ce3
 
 
859a24c
 
0348ce3
859a24c
0348ce3
 
859a24c
 
 
0348ce3
 
 
 
 
 
 
 
 
859a24c
0348ce3
 
859a24c
0348ce3
 
 
 
859a24c
 
 
0348ce3
 
 
 
 
 
 
 
859a24c
 
 
 
 
 
 
 
 
 
 
 
 
 
0348ce3
 
859a24c
0348ce3
859a24c
0348ce3
859a24c
0348ce3
859a24c
0348ce3
859a24c
0348ce3
859a24c
 
0348ce3
 
 
859a24c
 
 
0348ce3
 
859a24c
0348ce3
 
 
859a24c
 
 
 
 
 
 
 
 
 
0348ce3
 
 
 
859a24c
0348ce3
 
 
859a24c
 
 
 
 
 
 
 
 
 
8f3010c
859a24c
 
 
 
 
 
 
 
0348ce3
859a24c
8f3010c
0348ce3
859a24c
 
 
 
0348ce3
859a24c
0348ce3
859a24c
 
0348ce3
859a24c
0348ce3
859a24c
 
0348ce3
859a24c
 
 
0348ce3
859a24c
 
 
 
 
 
 
0348ce3
859a24c
 
 
0348ce3
859a24c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import re
import pandas as pd
from newspaper import Article
import docx2txt
from io import StringIO
from PyPDF2 import PdfFileReader
import validators
import nltk
import warnings
import streamlit as st

nltk.download('punkt')

from nltk import sent_tokenize

warnings.filterwarnings("ignore")


def extract_text_from_url(url: str):
    '''Extract text from url'''

    article = Article(url)
    article.download()
    article.parse()

    # get text
    text = article.text

    # get article title
    title = article.title

    return title, text


def extract_text_from_file(file):
    '''Extract text from uploaded file'''

    # read text file
    if file.type == "text/plain":
        # To convert to a string based IO:
        stringio = StringIO(file.getvalue().decode("utf-8"))

        # To read file as string:
        file_text = stringio.read()

        return file_text, None

    # read pdf file
    elif file.type == "application/pdf":
        pdfReader = PdfFileReader(file)
        count = pdfReader.numPages
        all_text = ""
        pdf_title = pdfReader.getDocumentInfo().title

        for i in range(count):

            try:
                page = pdfReader.getPage(i)
                all_text += page.extractText()

            except:
                continue

        file_text = all_text

        return file_text, pdf_title

    # read docx file
    elif (
            file.type
            == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
    ):
        file_text = docx2txt.process(file)

        return file_text, None


def preprocess_plain_text(text, window_size=3):
    text = text.encode("ascii", "ignore").decode()  # unicode
    text = re.sub(r"https*\S+", " ", text)  # url
    text = re.sub(r"@\S+", " ", text)  # mentions
    text = re.sub(r"#\S+", " ", text)  # hastags
    text = re.sub(r"\s{2,}", " ", text)  # over spaces
    text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text)  # special characters except .,!?

    # break into lines and remove leading and trailing space on each
    lines = [line.strip() for line in text.splitlines()]

    # #break multi-headlines into a line each
    chunks = [phrase.strip() for line in lines for phrase in line.split("  ")]

    # # drop blank lines
    text = '\n'.join(chunk for chunk in chunks if chunk)

    ## We split this article into paragraphs and then every paragraph into sentences
    paragraphs = []
    for paragraph in text.replace('\n', ' ').split("\n\n"):
        if len(paragraph.strip()) > 0:
            paragraphs.append(sent_tokenize(paragraph.strip()))

    window_size = window_size
    passages = []
    for paragraph in paragraphs:
        for start_idx in range(0, len(paragraph), window_size):
            end_idx = min(start_idx + window_size, len(paragraph))
            passages.append(" ".join(paragraph[start_idx:end_idx]))

    st.write(f"Sentences: {sum([len(p) for p in paragraphs])}")
    st.write(f"Passages: {len(passages)}")

    return passages


@st.experimental_memo(suppress_st_warning=True)
def bi_encode(bi_enc, passages):
    global bi_encoder
    # We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
    bi_encoder = SentenceTransformer(bi_enc)

    # quantize the model
    # bi_encoder = quantize_dynamic(model, {Linear, Embedding})

    # Compute the embeddings using the multi-process pool
    with st.spinner('Encoding passages into a vector space...'):
        corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)

    st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}")

    return bi_encoder, corpus_embeddings


@st.experimental_singleton(suppress_st_warning=True)
def cross_encode():
    global cross_encoder
    # We use a cross-encoder, to re-rank the results list to improve the quality
    cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
    return cross_encoder


bi_enc_options = ["multi-qa-mpnet-base-dot-v1", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"]


def display_as_table(model, top_k, score='score'):
    # Display the df with text and scores as a table
    df = pd.DataFrame([(hit[score], passages[hit['corpus_id']]) for hit in model[0:top_k]], columns=['Score', 'Text'])
    df['Score'] = round(df['Score'], 2)

    return df


# Streamlit App

st.title("Semantic Search with Retrieve & Rerank 📝")

window_size = st.sidebar.slider("Paragraph Window Size", min_value=1, max_value=10, value=3, key=
'slider')

bi_encoder_type = st.sidebar.selectbox("Bi-Encoder", options=bi_enc_options, key='sbox')

top_k = st.sidebar.slider("Number of Top Hits Generated", min_value=1, max_value=5, value=2)


# This function will search all wikipedia articles for passages that
# answer the query
def search_func(query, top_k=top_k):
    global bi_encoder, cross_encoder

    st.subheader(f"Search Query: {query}")

    if url_text:

        st.write(f"Document Header: {title}")

    elif pdf_title:

        st.write(f"Document Header: {pdf_title}")

    # Encode the query using the bi-encoder and find potentially relevant passages
    question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
    question_embedding = question_embedding.cpu()
    hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k, score_function=util.dot_score)
    hits = hits[0]  # Get the hits for the first query

    # Now, score all retrieved passages with the cross_encoder
    cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)

    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]

    # Output of top-3 hits from bi-encoder
    st.markdown("\n-------------------------\n")
    st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits")
    hits = sorted(hits, key=lambda x: x['score'], reverse=True)

    cross_df = display_as_table(hits, top_k)
    st.write(cross_df.to_html(index=False), unsafe_allow_html=True)

    # Output of top-3 hits from re-ranker
    st.markdown("\n-------------------------\n")
    st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)

    rerank_df = display_as_table(hits, top_k, 'cross-score')
    st.write(rerank_df.to_html(index=False), unsafe_allow_html=True)


def clear_text():
    st.session_state["text_url"] = ""
    st.session_state["text_input"] = ""


def clear_search_text():
    st.session_state["text_input"] = ""


url_text = st.text_input("Please Enter a url here",
                         value="https://en.wikipedia.org/wiki/Virat_Kohli",
                         key='text_url', on_change=clear_search_text)

st.markdown(
    "<h3 style='text-align: center; color: red;'>OR</h3>",
    unsafe_allow_html=True,
)

upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file", key="upload")

search_query = st.text_input("Please Enter your search query here",
                             value="Who is Virat Kohli?", key="text_input")

if validators.url(url_text):
    # if input is URL
    title, text = extract_text_from_url(url_text)
    passages = preprocess_plain_text(text, window_size=window_size)

elif upload_doc:

    text, pdf_title = extract_text_from_file(upload_doc)
    passages = preprocess_plain_text(text, window_size=window_size)

col1, col2 = st.columns(2)

with col1:
    search = st.button("Search", key='search_but', help='Click to Search!!')

with col2:
    clear = st.button("Clear Text Input", on_click=clear_text, key='clear',
                      help='Click to clear the URL input and search query')

if search:
    if bi_encoder_type:
        with st.spinner(
                text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..."
        ):
            bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type, passages)
            cross_encoder = cross_encode()

        with st.spinner(
                text="Embedding completed, searching for relevant text for given query and hits..."):
            search_func(search_query, top_k)

st.markdown("""
            """)