File size: 8,007 Bytes
0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 8f3010c 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 8f9797b 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 41d76e5 0348ce3 859a24c 10ca2b8 8f9797b 859a24c 9c6136a 10ca2b8 41d76e5 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 8f3010c 859a24c 0348ce3 859a24c 8f3010c 0348ce3 859a24c 8f9797b 0348ce3 859a24c 0348ce3 859a24c 8f9797b 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 0348ce3 859a24c 41d76e5 0348ce3 859a24c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import re
import pandas as pd
from newspaper import Article
import docx2txt
from io import StringIO
from PyPDF2 import PdfFileReader
import validators
import nltk
import warnings
import streamlit as st
nltk.download('punkt')
from nltk import sent_tokenize
warnings.filterwarnings("ignore")
def extract_text_from_url(url: str):
'''Extract text from url'''
article = Article(url)
article.download()
article.parse()
# get text
text = article.text
# get article title
title = article.title
return title, text
def extract_text_from_file(file):
'''Extract text from uploaded file'''
# read text file
if file.type == "text/plain":
# To convert to a string based IO:
stringio = StringIO(file.getvalue().decode("utf-8"))
# To read file as string:
file_text = stringio.read()
return file_text, None
# read pdf file
elif file.type == "application/pdf":
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_text = ""
pdf_title = pdfReader.getDocumentInfo().title
for i in range(count):
try:
page = pdfReader.getPage(i)
all_text += page.extractText()
except:
continue
file_text = all_text
return file_text, pdf_title
# read docx file
elif (
file.type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
file_text = docx2txt.process(file)
return file_text, None
def preprocess_plain_text(text, window_size=3):
text = text.encode("ascii", "ignore").decode() # unicode
text = re.sub(r"https*\S+", " ", text) # url
text = re.sub(r"@\S+", " ", text) # mentions
text = re.sub(r"#\S+", " ", text) # hastags
text = re.sub(r"\s{2,}", " ", text) # over spaces
text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
# break into lines and remove leading and trailing space on each
lines = [line.strip() for line in text.splitlines()]
# #break multi-headlines into a line each
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
# # drop blank lines
text = '\n'.join(chunk for chunk in chunks if chunk)
## We split this article into paragraphs and then every paragraph into sentences
paragraphs = []
for paragraph in text.replace('\n', ' ').split("\n\n"):
if len(paragraph.strip()) > 0:
paragraphs.append(sent_tokenize(paragraph.strip()))
window_size = 3
passages = []
for paragraph in paragraphs:
for start_idx in range(0, len(paragraph), window_size):
end_idx = min(start_idx + window_size, len(paragraph))
passages.append(" ".join(paragraph[start_idx:end_idx]))
st.write(f"Sentences: {sum([len(p) for p in paragraphs])}")
st.write(f"Passages: {len(passages)}")
return passages
@st.experimental_memo(suppress_st_warning=True)
def bi_encode(bi_enc, passages):
global bi_encoder
# We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(bi_enc)
# quantize the model
# bi_encoder = quantize_dynamic(model, {Linear, Embedding})
# Compute the embeddings using the multi-process pool
with st.spinner('Encoding passages into a vector space...'):
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}")
return bi_encoder, corpus_embeddings
@st.experimental_singleton(suppress_st_warning=True)
def cross_encode():
global cross_encoder
# We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
return cross_encoder
def display_as_table(model, top_k=2, score='score'):
# Display the df with text and scores as a table
df = pd.DataFrame([(hit[score], passages[hit['corpus_id']]) for hit in model[0:top_k]], columns=['Score', 'Text'])
df['Score'] = round(df['Score'], 2)
return df
# Streamlit App
st.title("Search with Retrieve & Rerank")
window_size = 3
bi_encoder_type="multi-qa-mpnet-base-dot-v1"
# This function will search all wikipedia articles for passages that answer the query
def search_func(query, top_k=2):
global bi_encoder, cross_encoder
st.subheader(f"Search Query: {query}")
if url_text:
st.write(f"Document Header: {title}")
elif pdf_title:
st.write(f"Document Header: {pdf_title}")
# Encode the query using the bi-encoder and find potentially relevant passages
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
question_embedding = question_embedding.cpu()
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k, score_function=util.dot_score)
hits = hits[0] # Get the hits for the first query
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-3 hits from bi-encoder
st.markdown("\n-------------------------\n")
st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
cross_df = display_as_table(hits, top_k)
st.write(cross_df.to_html(index=False), unsafe_allow_html=True)
# Output of top-3 hits from re-ranker
st.markdown("\n-------------------------\n")
st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
rerank_df = display_as_table(hits, top_k, 'cross-score')
st.write(rerank_df.to_html(index=False), unsafe_allow_html=True)
def clear_text():
st.session_state["text_url"] = ""
st.session_state["text_input"] = ""
def clear_search_text():
st.session_state["text_input"] = ""
url_text = st.text_input("Please Enter a url here",
value="https://en.wikipedia.org/wiki/Virat_Kohli",
key='text_url', on_change=clear_search_text)
st.markdown(
"<h3 style='text-align: center; color: red;'>OR</h3>",
unsafe_allow_html=True,
)
upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file", key="upload")
search_query = st.text_input("Please Enter your search query here",
value="Who is Virat Kohli?", key="text_input")
if validators.url(url_text):
# if input is URL
title, text = extract_text_from_url(url_text)
passages = preprocess_plain_text(text, window_size=3)
elif upload_doc:
text, pdf_title = extract_text_from_file(upload_doc)
passages = preprocess_plain_text(text, window_size=3)
col1, col2 = st.columns(2)
with col1:
search = st.button("Search", key='search_but', help='Click to Search!!')
with col2:
clear = st.button("Clear Text Input", on_click=clear_text, key='clear',
help='Click to clear the URL input and search query')
if search:
if bi_encoder_type:
with st.spinner(
text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..."
):
bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type, passages)
cross_encoder = cross_encode()
with st.spinner(
text="Embedding completed, searching for relevant text for given query and hits..."):
search_func(search_query, top_k=2)
st.markdown("""
""")
|