Spaces:
Sleeping
Sleeping
File size: 1,397 Bytes
8bbfca2 9d8e92e 8bbfca2 9d8e92e 7eb5409 9d8e92e 8bbfca2 41fe4ff 8bbfca2 9d8e92e 41fe4ff 8bbfca2 41fe4ff 9d8e92e a5a0bc7 9d8e92e 41fe4ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load DialoGPT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium",padding_side='left)
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# Streamlit app header
st.set_page_config(page_title="Conversational Model Demo", page_icon="🤖")
st.header("Conversational Model Demo")
# Initialize chat history
chat_history_ids = None
# Input for user message
user_message = st.text_input("You:", "")
if st.button("Send"):
# Encode the new user input, add the eos_token and return a tensor in PyTorch
new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
# Append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids
# Generate a response while limiting the total chat history to 1000 tokens
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# Pretty print last output tokens from the bot
model_response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
# Display the model's response
st.text_area("Model:", model_response, height=100) |