James332 commited on
Commit
c1a5470
·
1 Parent(s): 3d0b27e

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -0
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
15
+ )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [204, 87, 92],
21
+ [112, 185, 212],
22
+ [45, 189, 106],
23
+ [234, 123, 67],
24
+ [78, 56, 123],
25
+ [210, 32, 89],
26
+ [90, 180, 56],
27
+ [155, 102, 200],
28
+ [33, 147, 176],
29
+ [255, 183, 76],
30
+ [67, 123, 89],
31
+ [190, 60, 45],
32
+ [134, 112, 200],
33
+ [56, 45, 189],
34
+ [200, 56, 123],
35
+ [87, 92, 204],
36
+ [120, 56, 123],
37
+ [45, 78, 123],
38
+ [156, 200, 56],
39
+
40
+ ]
41
+
42
+ labels_list = []
43
+
44
+ with open(r'labels.txt', 'r') as fp:
45
+ for line in fp:
46
+ labels_list.append(line[:-1])
47
+
48
+ colormap = np.asarray(ade_palette())
49
+
50
+ def label_to_color_image(label):
51
+ if label.ndim != 2:
52
+ raise ValueError("Expect 2-D input label")
53
+
54
+ if np.max(label) >= len(colormap):
55
+ raise ValueError("label value too large.")
56
+ return colormap[label]
57
+
58
+ def draw_plot(pred_img, seg):
59
+ fig = plt.figure(figsize=(20, 15))
60
+
61
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
62
+
63
+ plt.subplot(grid_spec[0])
64
+ plt.imshow(pred_img)
65
+ plt.axis('off')
66
+ LABEL_NAMES = np.asarray(labels_list)
67
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
68
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
69
+
70
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
71
+ ax = plt.subplot(grid_spec[1])
72
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
73
+ ax.yaxis.tick_right()
74
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
75
+ plt.xticks([], [])
76
+ ax.tick_params(width=0.0, labelsize=25)
77
+ return fig
78
+
79
+ def sepia(input_img):
80
+ input_img = Image.fromarray(input_img)
81
+
82
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
83
+ outputs = model(**inputs)
84
+ logits = outputs.logits
85
+
86
+ logits = tf.transpose(logits, [0, 2, 3, 1])
87
+ logits = tf.image.resize(
88
+ logits, input_img.size[::-1]
89
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
90
+ seg = tf.math.argmax(logits, axis=-1)[0]
91
+
92
+ color_seg = np.zeros(
93
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
94
+ ) # height, width, 3
95
+ for label, color in enumerate(colormap):
96
+ color_seg[seg.numpy() == label, :] = color
97
+
98
+ # Show image + mask
99
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
100
+ pred_img = pred_img.astype(np.uint8)
101
+
102
+ fig = draw_plot(pred_img, seg)
103
+ return fig
104
+
105
+ demo = gr.Interface(fn=sepia,
106
+ inputs=gr.Image(shape=(400, 600)),
107
+ outputs=['plot'],
108
+ examples=["city-1.jpg", "city-2.jpg", "city-3.jpg", "city-4.jpg", "city-5.jpg"],
109
+ allow_flagging='never')
110
+
111
+
112
+ demo.launch()