Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the PEFT model and tokenizer from Hugging Face Hub | |
model_name = "JamieAi33/Phi-2_PEFT" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Define the prediction function | |
def generate_text(prompt, max_length=100): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=max_length) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# PEFT LLM Demo") | |
gr.Markdown("Generate text using the Phi-2 PEFT model.") | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Input Prompt", placeholder="Enter a prompt here...") | |
max_tokens_input = gr.Slider(label="Max Tokens", minimum=10, maximum=200, value= | |