File size: 2,277 Bytes
7a58110
 
 
31f5d1f
6b3696a
31f5d1f
b4b980c
 
 
31f5d1f
b4b980c
 
8f528d9
b4b980c
 
 
 
 
 
 
 
 
 
7a58110
 
 
8f528d9
7a58110
 
 
 
 
b4b980c
6b3696a
7a58110
31f5d1f
 
b4b980c
 
 
 
 
 
 
 
 
 
 
7a58110
b4b980c
 
7a58110
b4b980c
 
7a58110
31f5d1f
6b3696a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import requests
import io
from PIL import Image
import gradio as gr
import os

# Assuming you have your API tokens set in environment variables
ZEPHYR_API_TOKEN = os.getenv("HF_API_TOKEN")
SD_API_TOKEN = os.getenv("HF_API_TOKEN")

if not ZEPHYR_API_TOKEN or not SD_API_TOKEN:
    raise ValueError("API tokens not found. Please set the ZEPHYR_API_TOKEN and HF_API_TOKEN environment variables.")

ZEPHYR_API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
SD_API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"

def query_zephyr(prompt):
    headers = {"Authorization": f"Bearer {ZEPHYR_API_TOKEN}"}
    response = requests.post(ZEPHYR_API_URL, headers=headers, json={"inputs": prompt})
    return response.json()

def generate_image_from_prompt(prompt, guidance_scale=7.5, width=1024, height=768, num_inference_steps=30):
    headers = {"Authorization": f"Bearer {SD_API_TOKEN}"}
    payload = {
        "inputs": prompt,
        "parameters": {
            "guidance_scale": guidance_scale,
            "width": width,
            "height": height,
            "num_inference_steps": num_inference_steps,
        },
    }
    response = requests.post(SD_API_URL, headers=headers, json=payload)
    image_bytes = response.content
    image = Image.open(io.BytesIO(image_bytes))
    return image

def generate_image_from_linkedin_text(linkedin_text):
    # Step 1: Generate a prompt from the LinkedIn text using Zephyr
    zephyr_output = query_zephyr(linkedin_text)
    generated_prompt = zephyr_output.get("generated_text", "")

    # Step 2: Use the generated prompt to create an image with Stable Diffusion
    if generated_prompt:
        return generate_image_from_prompt(generated_prompt)
    else:
        raise ValueError("Failed to generate a prompt from the LinkedIn text.")

iface = gr.Interface(
    fn=generate_image_from_linkedin_text,
    inputs=[gr.Textbox(label="LinkedIn Message", placeholder="Enter LinkedIn message here...")],
    outputs=gr.Image(type="pil"),
    title="Generate Images from LinkedIn Messages",
    description="Enter a LinkedIn message to generate a creative prompt with Zephyr, which is then used to generate an image with Stable Diffusion."
)

iface.launch()