JaphetHernandez commited on
Commit
0f7ceaf
·
verified ·
1 Parent(s): 175dd88

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -16
app.py CHANGED
@@ -1,11 +1,11 @@
1
- from langchain.hub import HuggingFaceHub
2
  from langchain.chains import LLMChain
3
  from langchain.prompts import PromptTemplate
4
  from langchain.indexes import RagIndex
5
  from langchain.retrievers import HuggingFaceRetriever
6
 
7
- # Inicializar el modelo LLaMA 3.2 desde Hugging Face Hub
8
- llm = HuggingFaceHub(repo_id="meta-llama/Llama-3.2", model_kwargs={"temperature": 0})
9
 
10
  # Crear un prompt para la similitud de coseno
11
  prompt_template = (
@@ -21,20 +21,8 @@ prompt = PromptTemplate.from_template(prompt_template)
21
  retriever = HuggingFaceRetriever.from_pretrained(
22
  "facebook/rag-token-nq", index_name="exact"
23
  )
24
- index = RagIndex(retriever=retriever)
25
 
26
- # Crear la cadena LLM con el modelo LLaMA y el prompt
27
- llm_chain = LLMChain(llm=llm, prompt=prompt)
28
-
29
- # Definir las frases para calcular la similitud de coseno
30
- phrase_1 = "Deep learning involves neural networks for complex data patterns."
31
- phrase_2 = "Neural networks are core components in deep learning."
32
-
33
- # Ejecutar la cadena con las frases dadas
34
- result = llm_chain.run(phrase_1=phrase_1, phrase_2=phrase_2)
35
-
36
- # Imprimir el puntaje de similitud de coseno
37
- print(f"Cosine Similarity Score: {result}")
38
 
39
  '''
40
  import pandas as pd
 
1
+ from langchain.llms import HuggingFaceLLM
2
  from langchain.chains import LLMChain
3
  from langchain.prompts import PromptTemplate
4
  from langchain.indexes import RagIndex
5
  from langchain.retrievers import HuggingFaceRetriever
6
 
7
+ # Inicializar el modelo LLaMA 3.2 desde Hugging Face usando HuggingFaceLLM
8
+ llm = HuggingFaceLLM.from_pretrained("meta-llama/Llama-3.2", model_kwargs={"temperature": 0})
9
 
10
  # Crear un prompt para la similitud de coseno
11
  prompt_template = (
 
21
  retriever = HuggingFaceRetriever.from_pretrained(
22
  "facebook/rag-token-nq", index_name="exact"
23
  )
24
+ index = Ra
25
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  '''
28
  import pandas as pd