|
import tensorflow as tf |
|
from tensorflow.keras import layers, models |
|
from tensorflow.keras.preprocessing.text import Tokenizer |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import gradio as gr |
|
|
|
|
|
imdb = tf.keras.datasets.imdb |
|
vocab_size = 10000 |
|
maxlen = 100 |
|
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=vocab_size) |
|
X_train = pad_sequences(X_train, maxlen=maxlen) |
|
X_test = pad_sequences(X_test, maxlen=maxlen) |
|
|
|
|
|
model = models.Sequential([ |
|
layers.Embedding(vocab_size, 16, input_length=maxlen), |
|
layers.GlobalAveragePooling1D(), |
|
layers.Dense(16, activation='relu'), |
|
layers.Dense(1, activation='sigmoid') |
|
]) |
|
|
|
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
model.fit(X_train, y_train, epochs=10, batch_size=512, validation_data=(X_test, y_test), verbose=1) |
|
|
|
|
|
model.save("sentiment_analysis_model.h5") |
|
|
|
|
|
def predict_sentiment(text): |
|
tokenizer = Tokenizer(num_words=vocab_size) |
|
tokenizer.fit_on_texts([text]) |
|
sequence = tokenizer.texts_to_sequences([text]) |
|
padded_sequence = pad_sequences(sequence, maxlen=maxlen) |
|
|
|
prediction = model.predict(padded_sequence)[0][0] |
|
sentiment = "Positive" if prediction >= 0.5 else "Negative" |
|
confidence = round(prediction, 4) |
|
|
|
return sentiment, confidence |
|
|
|
|
|
def gradio_predict(text): |
|
sentiment, confidence = predict_sentiment(text) |
|
return f"Sentiment: {sentiment}, Confidence: {confidence:.4f}" |
|
|
|
|
|
interface = gr.Interface(fn=gradio_predict, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), |
|
outputs="text", |
|
title="Sentiment Analysis", |
|
description="Enter a movie review or any text to analyze its sentiment.") |
|
|
|
|
|
interface.launch() |
|
|