Spaces:
Sleeping
Sleeping
File size: 2,792 Bytes
ed54ae1 7e996c7 ed54ae1 34cb55c 7e996c7 ed54ae1 28b7667 ed54ae1 7e996c7 ed54ae1 7e996c7 ed54ae1 7e996c7 ed54ae1 7e996c7 ed54ae1 7e996c7 943441f 28b7667 7e996c7 e5d5b22 57aa346 e5d5b22 4758dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import os
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import re
import pdfplumber
# Set the API key
os.environ['TOGETHER_API_KEY'] = "5653bbfbaf1f7c1438206f18e5dfc2f5992b8f0b6aa9796b0131ea454648ccde"
text = ""
max_pages = 16
with pdfplumber.open("AI Engineer Test.pdf") as pdf:
for i, page in enumerate(pdf.pages):
if i >= max_pages:
break
text += page.extract_text() + "\n"
def Bot(Questions):
chat_template = """
Based on the provided context: {text}
Please answer the following question: {Questions}
Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know".
"""
prompt = PromptTemplate(
input_variables=['text', 'Questions'],
template=chat_template
)
llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=15)
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
try:
response = Generated_chat.invoke({
"text": text,
"Questions": Questions
})
response_text = response['text']
response_text = response_text.replace("assistant", "")
# Post-processing to handle repeated words and ensure completeness
words = response_text.split()
seen = set()
filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())]
response_text = ' '.join(filtered_words)
response_text = response_text.strip() # Ensuring no extra spaces at the ends
if not response_text.endswith('.'):
response_text += '.'
return response_text
except Exception as e:
return f"Error in generating response: {e}"
def ChatBot(Questions):
greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
# Check if the input question is a greeting
question_lower = Questions.lower().strip()
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
return "Hello! How can I assist you with the document today?"
else:
response = Bot(Questions)
return response.translate(str.maketrans('', '', '\n'))
# Streamlit UI
st.title("AI Engineer Test")
Questions = st.text_input("Hi! How can I help you?:")
if st.button("Submit"):
answer = ChatBot(Questions)
st.write(answer)
# --- Logo ---
st.sidebar.image("Insight Therapy Solutions.png", width=200)
st.sidebar.title("Navigation")
st.sidebar.write("Reclaim Your Mental Health")
st.sidebar.markdown("[Visit us at](https://www.linkedin.com/in/muhammad-haseeb-ahmed-1954b5230/)")
|