File size: 2,792 Bytes
ed54ae1
 
 
 
 
 
 
 
 
7e996c7
ed54ae1
 
 
 
34cb55c
7e996c7
 
 
 
ed54ae1
 
 
 
 
 
 
 
 
 
 
28b7667
ed54ae1
 
7e996c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed54ae1
7e996c7
ed54ae1
7e996c7
 
ed54ae1
7e996c7
 
 
ed54ae1
7e996c7
943441f
28b7667
7e996c7
 
 
e5d5b22
 
 
 
 
 
57aa346
e5d5b22
 
 
4758dd3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import os
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import re
import pdfplumber

# Set the API key
os.environ['TOGETHER_API_KEY'] = "5653bbfbaf1f7c1438206f18e5dfc2f5992b8f0b6aa9796b0131ea454648ccde"

text = ""
max_pages = 16
with pdfplumber.open("AI Engineer Test.pdf") as pdf:
    for i, page in enumerate(pdf.pages):
        if i >= max_pages:
            break
        text += page.extract_text() + "\n"

def Bot(Questions):
    chat_template = """
    Based on the provided context: {text}
    Please answer the following question: {Questions}
    Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know".
    """
    prompt = PromptTemplate(
        input_variables=['text', 'Questions'],
        template=chat_template
    )
    llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=15)
    Generated_chat = LLMChain(llm=llama3, prompt=prompt)

    try:
        response = Generated_chat.invoke({
            "text": text,
            "Questions": Questions
        })

        response_text = response['text']

        response_text = response_text.replace("assistant", "")

        # Post-processing to handle repeated words and ensure completeness
        words = response_text.split()
        seen = set()
        filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())]
        response_text = ' '.join(filtered_words)
        response_text = response_text.strip()  # Ensuring no extra spaces at the ends
        if not response_text.endswith('.'):
            response_text += '.'

        return response_text
    except Exception as e:
        return f"Error in generating response: {e}"

def ChatBot(Questions):
    greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
    # Check if the input question is a greeting
    question_lower = Questions.lower().strip()
    if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
        return "Hello! How can I assist you with the document today?"
    else:
        response = Bot(Questions)
        return response.translate(str.maketrans('', '', '\n'))

# Streamlit UI
st.title("AI Engineer Test")
Questions = st.text_input("Hi! How can I help you?:")
if st.button("Submit"):
    answer = ChatBot(Questions)
    st.write(answer)




    # --- Logo ---

st.sidebar.image("Insight Therapy Solutions.png", width=200)

st.sidebar.title("Navigation")
st.sidebar.write("Reclaim Your Mental Health")
st.sidebar.markdown("[Visit us at](https://www.linkedin.com/in/muhammad-haseeb-ahmed-1954b5230/)")