JenetGhumman's picture
Update tasks/text.py
b552ad5 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.pipeline import Pipeline
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "TF-IDF + Logistic Regression"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection using TF-IDF and Logistic Regression.
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset into training and testing sets
train_data = dataset["train"]
test_data = dataset["test"]
train_texts, train_labels = train_data["text"], train_data["label"]
test_texts, test_labels = test_data["text"], test_data["label"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# Define the pipeline with TF-IDF and Logistic Regression
pipeline = Pipeline([
('tfidf', TfidfVectorizer(max_features=10000, ngram_range=(1, 2), stop_words="english")),
('clf', LogisticRegression(max_iter=1000, random_state=42))
])
# Set up GridSearchCV for hyperparameter tuning
param_grid = {
'tfidf__max_features': [5000, 10000, 15000],
'tfidf__ngram_range': [(1, 1), (1, 2)],
'clf__C': [0.1, 1, 10] # Regularization strength
}
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring='accuracy', verbose=2)
grid_search.fit(train_texts, train_labels)
# Get best estimator from GridSearch
best_model = grid_search.best_estimator_
# Model Inference
predictions = best_model.predict(test_texts)
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(test_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": len(test_data),
},
"best_params": grid_search.best_params_
}
return results