Maximofn's picture
feat(SRC): :rocket: If some input data of get_days_between_dates is a string, converts it to datetime
f63b719
from create_new_formularios import get_sorted_date_keys
from pathlib import Path
from datetime import datetime
from create_new_usuarios import get_macros_from_string
import statistics
def query_formularios(data, query_list, debug=False, file_name=None):
if file_name is not None:
debug = True
print(f"***************** file_name: {file_name} *****************")
# Get date keys
date_keys = get_sorted_date_keys(data)
if debug: print(f"\n\n\ndate_keys: {date_keys}")
# List of date keys that match the query
date_keys_that_match = []
# No data value
no_data_value = "| no data"
# Get all the keys in the query_list
queries_list = []
for query in query_list:
queries_list.append(query)
if debug:
print("queries_list:")
for query in queries_list:
for key in query.keys():
print(f"\tkey: {key}", end=" --> ")
for second_key in query[key].keys():
print(f"{key}: {query[key][second_key]}", end=", ")
print("")
# For each date key get all the keys
for date_key in date_keys:
if debug: print(f"\n * date_key: {date_key}")
# match is a boolean that will be true if the key is in query_dict
match = False
if debug: print(f"\tinitial match value: {match}")
# Get all the keys in the data
data_keys = data[date_key].keys()
if debug: print(f"\tkeys: {data_keys}")
# Find for each key if it is in query_dict
for query in queries_list:
# Get the query key
query_key = list(query.keys())[0]
# Get the query operator and value
query_operator = query[query_key]['operator']
is_operator_for_numbers = query_operator == '>' or query_operator == '<' or query_operator == '>=' or query_operator == '<='
query_value = query[query_key]['value']
type_of_query_value = type(query_value)
is_query_value_string = type_of_query_value == str
is_query_value_number = type_of_query_value == int or type_of_query_value == float
# Check if the query key is in the data
if query_key in data_keys:
# Get the data value
data_value = data[date_key][query_key]
if isinstance(data_value, str):
data_value = data_value.lower()
data_value = data_value.replace('谩', 'a')
data_value = data_value.replace('茅', 'e')
data_value = data_value.replace('铆', 'i')
data_value = data_value.replace('贸', 'o')
data_value = data_value.replace('煤', 'u')
type_of_data_value = type(data_value)
is_data_value_string = type_of_data_value == str
is_data_value_number = type_of_data_value == int or type_of_data_value == float
is_data_value_and_query_value_number = is_data_value_number and is_query_value_number
is_data_value_and_query_value_string = is_data_value_string and is_query_value_string
is_data_value_or_query_value_number = is_data_value_number or is_query_value_number
is_data_value_or_query_value_string = is_data_value_string or is_query_value_string
if debug: print(f"\t\tchecking \"{query_key}\" in data, query operator: \"{query_operator}\", query value: \"{query_value}\", data value: \"{data_value}\"")
# Check if the data value matches the query value
if query_operator == '==':
if query_value == data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT equal to \"{data_value}\", match: {match}")
break
# continue
elif query_operator == '!=':
if query_value != data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is NOT equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT equal to \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '>':
if data_value > query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is greater than \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT greater than \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '<':
if data_value < query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is less than \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT less than \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '>=':
if data_value >= query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is greater than or equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT greater than or equal to \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_number and is_data_value_number and query_operator == '<=':
if data_value <= query_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is less than or equal to \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT less than or equal to \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_string and is_data_value_string and query_operator == 'in' or query_operator == 'contains':
if query_value in data_value or no_data_value in data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is in \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT in \"{data_value}\", match: {match}")
break
# continue
elif is_query_value_string and is_data_value_string and (query_operator == 'NOT in' or query_operator == 'NOT contains'):
if query_value not in data_value or no_data_value in data_value:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is NOT in \"{data_value}\", match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT in \"{data_value}\", match: {match}")
break
# continue
elif query_operator == 'is null':
if data_value is None:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is null, match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT null, match: {match}")
break
# continue
elif query_operator == 'is NOT null':
if data_value is not None:
match = True
if debug: print(f"\t\t\t\"{query_value}\" is NOT null, match: {match}")
else:
match = False
if debug: print(f"\t\t\t\"{query_value}\" is NOT null, match: {match}")
break
# continue
elif is_operator_for_numbers and is_data_value_or_query_value_string:
if is_data_value_string and is_query_value_string:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, because data value is string and query value is string, match: {match}")
break
elif is_data_value_string and is_query_value_number:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, because data value is string, match: {match}")
break
else:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, because query value is number, match: {match}")
break
else:
match = False
if debug: print(f"\t\t\toperator \"{query_operator}\" NOT supported, match: {match}")
break
# continue
# If the match is true, add the date_key to the list
if match:
if debug: print(f"\t***** {query_key} matches, adding date_key: {date_key} *****")
date_keys_that_match.append(date_key)
if debug:
print("\t dates that match:")
for date_key in date_keys_that_match:
print(f"\t\t{date_key}")
return date_keys_that_match
def string_date_list_to_date_list(string_date_list):
date_list = []
for string_date in string_date_list:
date_list.append(datetime.strptime(string_date, '%Y-%m-%d'))
return date_list
def date_to_string(date):
string_date = date.strftime('%Y-%m-%d')
string_date = string_date.replace('-01', '-1')
string_date = string_date.replace('-02', '-2')
string_date = string_date.replace('-03', '-3')
string_date = string_date.replace('-04', '-4')
string_date = string_date.replace('-05', '-5')
string_date = string_date.replace('-06', '-6')
string_date = string_date.replace('-07', '-7')
string_date = string_date.replace('-08', '-8')
string_date = string_date.replace('-09', '-9')
return string_date
def get_days_between_dates(date1, date2):
if isinstance(date1, str):
date1 = datetime.strptime(date1, '%Y-%m-%d')
if isinstance(date2, str):
date2 = datetime.strptime(date2, '%Y-%m-%d')
return (date1 - date2).days
def query_usuarios(data, query_list, limit_days=8, debug=False):
# Get date keys
date_keys = get_sorted_date_keys(data)
if debug: print(f"\tdate_keys: {date_keys}")
# Format date_keys to date objects
date_keys = string_date_list_to_date_list(date_keys)
# Format query_list to date objects
if debug: print(f"\tquery_list: {query_list}")
query_list = string_date_list_to_date_list(query_list)
# Create empty list to store the date_keys that match
date_keys_that_match = []
# Create empty list to store the macros differences date
macros_differences_dates = []
# Iterate for each query_list date
for query_date in query_list:
# Iterate for each date_key
for date_key in date_keys:
# Get the days between the query_date and the date_key
days_between = get_days_between_dates(query_date, date_key)
if days_between <= limit_days and days_between > 0:
if debug: print(f"\tdays between form data {date_to_string(query_date)} and macros change data {date_to_string(date_key)}: {days_between}")
# Add the date_key to the list and break the loop, because is first mach so is match with less days between dates
date_keys_that_match.append(date_to_string(date_key))
# Add the date_key to the macros_differences_dates list
macros_differences_dates.append(date_to_string(query_date))
break
return date_keys_that_match, macros_differences_dates
def get_macros_differences(data, dates_list):
macros_differences_list = []
for date in dates_list:
macros_differences_list.append(data[date]['diferencia_macros'])
return macros_differences_list
def get_min_max_mean_mode_macros_differences(macros_differences_list):
# Create list for each macro
train_day_protein_list = []
train_day_carbs_list = []
train_day_fat_list = []
intratrain_protein_list = []
intratrain_carbs_list = []
rest_day_protein_list = []
rest_day_carbs_list = []
rest_day_fat_list = []
# Iterate over the macros differences list
for macros_difference in macros_differences_list:
# Get the macros difference as a list of integers
macros_difference_int_list = get_macros_from_string(macros_difference)
# Append the macros difference to the list
train_day_protein_list.append(macros_difference_int_list[0])
train_day_carbs_list.append(macros_difference_int_list[1])
train_day_fat_list.append(macros_difference_int_list[2])
intratrain_protein_list.append(macros_difference_int_list[3])
intratrain_carbs_list.append(macros_difference_int_list[4])
rest_day_protein_list.append(macros_difference_int_list[5])
rest_day_carbs_list.append(macros_difference_int_list[6])
rest_day_fat_list.append(macros_difference_int_list[7])
# Get the min, max, mean and mode of the macros differences
min_train_day_protein = min(train_day_protein_list)
max_train_day_protein = max(train_day_protein_list)
mean_train_day_protein = sum(train_day_protein_list) / len(train_day_protein_list)
mode_train_day_protein = statistics.mode(train_day_protein_list)
train_day_protein_std = (min_train_day_protein, max_train_day_protein, mean_train_day_protein, mode_train_day_protein)
min_train_day_carbs = min(train_day_carbs_list)
max_train_day_carbs = max(train_day_carbs_list)
mean_train_day_carbs = sum(train_day_carbs_list) / len(train_day_carbs_list)
mode_train_day_carbs = statistics.mode(train_day_carbs_list)
train_day_carbs_std = (min_train_day_carbs, max_train_day_carbs, mean_train_day_carbs, mode_train_day_carbs)
min_train_day_fat = min(train_day_fat_list)
max_train_day_fat = max(train_day_fat_list)
mean_train_day_fat = sum(train_day_fat_list) / len(train_day_fat_list)
mode_train_day_fat = statistics.mode(train_day_fat_list)
train_day_fat_std = (min_train_day_fat, max_train_day_fat, mean_train_day_fat, mode_train_day_fat)
min_intratrain_protein = min(intratrain_protein_list)
max_intratrain_protein = max(intratrain_protein_list)
mean_intratrain_protein = sum(intratrain_protein_list) / len(intratrain_protein_list)
mode_intratrain_protein = statistics.mode(intratrain_protein_list)
intratrain_protein_std = (min_intratrain_protein, max_intratrain_protein, mean_intratrain_protein, mode_intratrain_protein)
min_intratrain_carbs = min(intratrain_carbs_list)
max_intratrain_carbs = max(intratrain_carbs_list)
mean_intratrain_carbs = sum(intratrain_carbs_list) / len(intratrain_carbs_list)
mode_intratrain_carbs = statistics.mode(intratrain_carbs_list)
intratrain_carbs_std = (min_intratrain_carbs, max_intratrain_carbs, mean_intratrain_carbs, mode_intratrain_carbs)
min_rest_day_protein = min(rest_day_protein_list)
max_rest_day_protein = max(rest_day_protein_list)
mean_rest_day_protein = sum(rest_day_protein_list) / len(rest_day_protein_list)
mode_rest_day_protein = statistics.mode(rest_day_protein_list)
rest_day_protein_std = (min_rest_day_protein, max_rest_day_protein, mean_rest_day_protein, mode_rest_day_protein)
min_rest_day_carbs = min(rest_day_carbs_list)
max_rest_day_carbs = max(rest_day_carbs_list)
mean_rest_day_carbs = sum(rest_day_carbs_list) / len(rest_day_carbs_list)
mode_rest_day_carbs = statistics.mode(rest_day_carbs_list)
rest_day_carbs_std = (min_rest_day_carbs, max_rest_day_carbs, mean_rest_day_carbs, mode_rest_day_carbs)
min_rest_day_fat = min(rest_day_fat_list)
max_rest_day_fat = max(rest_day_fat_list)
mean_rest_day_fat = sum(rest_day_fat_list) / len(rest_day_fat_list)
mode_rest_day_fat = statistics.mode(rest_day_fat_list)
rest_day_fat_std = (min_rest_day_fat, max_rest_day_fat, mean_rest_day_fat, mode_rest_day_fat)
return train_day_protein_std, train_day_carbs_std, train_day_fat_std, intratrain_protein_std, intratrain_carbs_std, rest_day_protein_std, rest_day_carbs_std, rest_day_fat_std
def clustering_esfuerzo_dieta_response(response, debug=False):
# Options:
# No entiendo la calculadora, quiero men煤s tipo, c谩rgame 4|I: 2
# No cost贸 nada|A: 1504
# Cost贸 demasiado, s煤beme macros|D: 28
# Cost贸, pero me adapto a nuevos ajustes|C: 331
# Iba a coger men煤s tipo, pero al final por precio no|D: 13
# Cost贸 demasiado, b谩jame macros|D: 42
# No entiendo la calculadora, quiero men煤s tipo, c谩rgame 2|I: 3
#
# Clustering:
# 0 (No data):
# No entiendo la calculadora, quiero men煤s tipo, c谩rgame 4|I: 2 | No data
# Iba a coger men煤s tipo, pero al final por precio no|D: 13 | No data
# No entiendo la calculadora, quiero men煤s tipo, c谩rgame 2|I: 3 | No data
# 1 (cost贸 subir macros):
# Cost贸 demasiado, s煤beme macros|D: 28 | costo subir macros
# 2 (cost贸 bajar macros):
# Cost贸 demasiado, b谩jame macros|D: 42 | costo bajar macros
# 3 (cost贸 y me adapto a nuevos ajustes):
# Cost贸, pero me adapto a nuevos ajustes|C: 331 | costo y me adapto a nuevos ajustes
# 4 (no cost贸):
# No cost贸 nada|A: 1504 | no costo
if " | No data".lower() in response.lower() or 'no data'.lower() in response.lower():
if debug: print(f"\t\t{response} -> no data")
return 'no data'
elif " | costo subir macros".lower() in response.lower() or 'costo subir macros'.lower() in response.lower():
if debug: print(f"\t\t{response} -> costo subir macros")
return 'costo subir macros'
elif " | costo bajar macros".lower() in response.lower() or 'costo bajar macros'.lower() in response.lower():
if debug: print(f"\t\t{response} -> costo bajar macros")
return 'costo bajar macros'
elif " | costo y me adapto a nuevos ajustes".lower() in response.lower() or 'costo y me adapto a nuevos ajustes'.lower() in response.lower():
if debug: print(f"\t\t{response} -> costo y me adapto a nuevos ajustes")
return 'costo y me adapto a nuevos ajustes'
elif " | no costo".lower() in response.lower() or 'no costo'.lower() in response.lower():
if debug: print(f"\t\t{response} -> no costo")
return 'no costo'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_objetivo_response(response, debug=False):
# Options:
# definici贸n (nada cambia)|A: 1031
# empezamos a definir (cambia)|C: 92
# perder peso (nada cambia)|A: 21
# volumen (nada cambia)|A: 688
# empezamos a coger volumen (cambia)|C: 78
# empezamos a coger volumen, sobre todo tren inferior (cambia)|C: 7
# empezamos a coger volumen, en todo el cuerpo (cambia)|C: 6
#
# Clustering:
# 0 (definici贸n):
# definici贸n (nada cambia)|A: 1031 | definici贸n
# empezamos a definir (cambia)|C: 92 | definici贸n
# perder peso (nada cambia)|A: 21 | definici贸n
# 1 (volumen):
# volumen (nada cambia)|A: 688 | volumen
# empezamos a coger volumen (cambia)|C: 78 | volumen
# empezamos a coger volumen, sobre todo tren inferior (cambia)|C: 7 | volumen
# empezamos a coger volumen, en todo el cuerpo (cambia)|C: 6 | volumen
if " | definicion".lower() in response.lower() or 'definicion'.lower() in response.lower():
if debug: print(f"\t\t{response} -> definicion")
return 'definicion'
elif " | volumen".lower() in response.lower() or 'volumen'.lower() in response.lower():
if debug: print(f"\t\t{response} -> volumen")
return 'volumen'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_entrenamiento_response(response, debug=False):
# Options:
# Lo hice perfecto|A|10: 838
# He fallado algunos d铆as, pero s铆|B|5: 98
# Lesi贸n importante: 16
# Lo hice pr谩cticamente perfecto|A|8: 416
# Peque帽a lesi贸n: 63
# No hice nada, mantenemos la rutina un mes m谩s|I|0: 64
# Al谩rgame la rutina una semana m谩s|I|6: 32
#
# Clustering:
# 0 (bien):
# Lo hice perfecto|A|10: 838 | bien
# He fallado algunos d铆as, pero s铆|B|5: 98 | bien
# Lo hice pr谩cticamente perfecto|A|8: 416 | bien
# 1 (mal):
# Lesi贸n importante: 16 | mal
# Peque帽a lesi贸n: 63 | mal
# No hice nada, mantenemos la rutina un mes m谩s|I|0: 64 | mal
# Al谩rgame la rutina una semana m谩s|I|6: 32 | mal
if " | bien".lower() in response.lower() or 'bien'.lower() in response.lower():
if debug: print(f"\t\t{response} -> bien")
return 'bien'
elif " | mal".lower() in response.lower() or 'mal'.lower() in response.lower():
if debug: print(f"\t\t{response} -> mal")
return 'mal'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_cumplimiento_dieta_response(response, debug=False):
# Options:
# al 70%|B|6: 564
# regular, me cuesta llegar|C|5: 57
# Nada, mant茅n mis macros|I|0: 123
# casi perfecta|A|9: 610
# regular, me salto la dieta|C|4: 6
# Perfecta|A|10: 563
#
# Clustering:
# 0 (bien):
# al 70%|B|6: 564 | bien
# casi perfecta|A|9: 610 | bien
# Perfecta|A|10: 563 | bien
# 1 (regular):
# regular, me cuesta llegar|C|5: 57 | regular
# regular, me salto la dieta|C|4: 6 | regular
# 2 (mal):
# Nada, mant茅n mis macros|I|0: 123 | mal
if " | bien".lower() in response.lower() or 'bien'.lower() in response.lower():
if debug: print(f"\t\t{response} -> bien")
return 'bien'
elif " | regular".lower() in response.lower() or 'regular'.lower() in response.lower():
if debug: print(f"\t\t{response} -> regular")
return 'regular'
elif "nada" in response.lower() or 'mal'.lower() in response.lower():
if debug: print(f"\t\t{response} -> mal")
return 'mal'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_compromiso_response(response, debug=False):
# Options:
# Bueno, pero mejorable|B|7: 604
# Mal, pero a partir de ahora voy a por todas|C|0: 319
# Mal, demasiado exigente|D|0: 15
# M谩ximo|A|10: 985
#
# Clustering:
# 0 (bueno):
# Bueno, pero mejorable|B|7: 604 | bueno
# M谩ximo|A|10: 985 | bueno
# 1 (mal):
# Mal, pero a partir de ahora voy a por todas|C|0: 319 | mal
# Mal, demasiado exigente|D|0: 15 | mal
if " | bueno".lower() in response.lower() or 'bueno'.lower() in response.lower():
if debug: print(f"\t\t{response} -> bueno")
return 'bueno'
elif " | mal".lower() in response.lower() or 'mal'.lower() in response.lower():
if debug: print(f"\t\t{response} -> mal")
return 'mal'
else:
if debug: print(f"\t\t{response} -> no data")
return 'no data'
def clustering_diferencia_peso_response(diff, debug=False):
diff_min = None
diff_max = None
if diff <= -5.0:
if debug: print(f"\t\t-10 <= {diff} <= -5")
diff_min = -10
diff_max = -5
elif diff <= -4.5:
if debug: print(f"\t\t-5 <= {diff} <= -4.5")
diff_min = -5
diff_max = -4.5
elif diff <= -4.0:
if debug: print(f"\t\t-4.5 <= {diff} <= -4.0")
diff_min = -4.5
diff_max = -4.0
elif diff <= -3.5:
if debug: print(f"\t\t-4.0 <= {diff} <= -3.5")
diff_min = -4.0
diff_max = -3.5
elif diff <= -3.0:
if debug: print(f"\t\t-3.5 <= {diff} <= -3.0")
diff_min = -3.5
diff_max = -3.0
elif diff <= -2.5:
if debug: print(f"\t\t-3.0 <= {diff} <= -2.5")
diff_min = -3.0
diff_max = -2.5
elif diff <= -2.0:
if debug: print(f"\t\t-2.5 <= {diff} <= -2.0")
diff_min = -2.5
diff_max = -2.0
elif diff <= -1.5:
if debug: print(f"\t\t-2.0 <= {diff} <= -1.5")
diff_min = -2.0
diff_max = -1.5
elif diff <= -1.0:
if debug: print(f"\t\t-1.5 <= {diff} <= -1.0")
diff_min = -1.5
diff_max = -1.0
elif diff <= -0.5:
if debug: print(f"\t\t-1.0 <= {diff} <= -0.5")
diff_min = -1.0
diff_max = -0.5
elif diff <= 0.0:
if debug: print(f"\t\t-0.5 <= {diff} <= 0.0")
diff_min = -0.5
diff_max = 0.0
elif diff <= 0.5:
if debug: print(f"\t\t0.0 <= {diff} <= 0.5")
diff_min = 0.0
diff_max = 0.5
elif diff <= 1.0:
if debug: print(f"\t\t0.5 <= {diff} <= 1.0")
diff_min = 0.5
diff_max = 1.0
elif diff <= 1.5:
if debug: print(f"\t\t1.0 <= {diff} <= 1.5")
diff_min = 1.0
diff_max = 1.5
elif diff <= 2.0:
if debug: print(f"\t\t1.5 <= {diff} <= 2.0")
diff_min = 1.5
diff_max = 2.0
elif diff <= 2.5:
if debug: print(f"\t\t2.0 <= {diff} <= 2.5")
diff_min = 2.0
diff_max = 2.5
elif diff <= 3.0:
if debug: print(f"\t\t2.5 <= {diff} <= 3.0")
diff_min = 2.5
diff_max = 3.0
elif diff <= 3.5:
if debug: print(f"\t\t3.0 <= {diff} <= 3.5")
diff_min = 3.0
diff_max = 3.5
elif diff <= 4.0:
if debug: print(f"\t\t3.5 <= {diff} <= 4.0")
diff_min = 3.5
diff_max = 4.0
elif diff <= 4.5:
if debug: print(f"\t\t4.0 <= {diff} <= 4.5")
diff_min = 4.0
diff_max = 4.5
elif diff <= 5.0:
if debug: print(f"\t\t4.5 <= {diff} <= 5.0")
diff_min = 4.5
diff_max = 5.0
else:
if debug: print(f"\t\t{diff} -> no data")
diff_min = None
diff_max = None
return diff_min, diff_max
def dieta_response(response_esfuerzo, response_cumplimiento, debug=False):
# esfuerzo dieta:
# 0 (No data):
# No entiendo la calculadora, quiero men煤s tipo, c谩rgame 4|I: 2
# Iba a coger men煤s tipo, pero al final por precio no|D: 13
# No entiendo la calculadora, quiero men煤s tipo, c谩rgame 2|I: 3
# 1 (cost贸 subir macros):
# Cost贸 demasiado, s煤beme macros|D: 28
# 2 (cost贸 bajar macros):
# Cost贸 demasiado, b谩jame macros|D: 42
# 3 (cost贸 y me adapto a nuevos ajustes):
# Cost贸, pero me adapto a nuevos ajustes|C: 331
# 4 (no cost贸):
# No cost贸 nada|A: 1504
# compromiso dieta:
# 0 (bien):
# al 70%|B|6: 564
# casi 漏|A|9: 610
# Perfecta|A|10: 563
# 1 (regular):
# regular, me cuesta llegar|C|5: 57
# regular, me salto la dieta|C|4: 6
# 2 (mal):
# Nada, mant茅n mis macros|I|0: 123
esfuerzo_dieta_cluster = clustering_esfuerzo_dieta_response(response_esfuerzo, debug)
cumplimiento_dieta_cluster = clustering_cumplimiento_dieta_response(response_cumplimiento, debug)
if esfuerzo_dieta_cluster == 0:
dieta_bien = cumplimiento_dieta_cluster == 0
dieta_regular = cumplimiento_dieta_cluster == 1
dieta_mal = cumplimiento_dieta_cluster == 2
else:
dieta_bien = esfuerzo_dieta_cluster == 4 and cumplimiento_dieta_cluster == 0
dieta_regular = esfuerzo_dieta_cluster == 3 and cumplimiento_dieta_cluster == 1
dieta_mal = (esfuerzo_dieta_cluster == 2 or esfuerzo_dieta_cluster == 1) and cumplimiento_dieta_cluster == 2
if dieta_bien:
return 0
elif dieta_regular:
return 1
elif dieta_mal:
return 2
else:
return 3
def make_query(cluster_esfuerzo_dieta, cluster_objetivo, cluster_entrenamiento, cluster_cumplimiento_dieta,
cluster_compromiso, diff_peso_min, diff_peso_max,
basic_query=False):
if not basic_query:
query = [
{
'esfuerzoParaCumplirDieta':
{
'operator': 'in',
'value': cluster_esfuerzo_dieta,
}
},
{
'objetivo':
{
'operator': 'in',
'value': cluster_objetivo,
}
},
{
'cumplimientoEntrenamiento':
{
'operator': 'in',
'value': cluster_entrenamiento,
}
},
{
'cumplimientoDieta':
{
'operator': 'in',
'value': cluster_cumplimiento_dieta,
}
},
{
'compromiso':
{
'operator': 'in',
'value': cluster_compromiso,
}
},
{
'diferencia_peso':
{
'operator': '<=',
'value': diff_peso_max,
}
},
{
'diferencia_peso':
{
'operator': '>=',
'value': diff_peso_min,
}
}
]
else:
query = [
{
'objetivo':
{
'operator': 'in',
'value': cluster_objetivo,
}
},
{
'cumplimientoEntrenamiento':
{
'operator': 'in',
'value': cluster_entrenamiento,
}
},
{
'cumplimientoDieta':
{
'operator': 'in',
'value': cluster_cumplimiento_dieta,
}
},
]
if cluster_esfuerzo_dieta.lower() == 'costo subir macros'.lower() or cluster_esfuerzo_dieta.lower() == 'costo bajar macros'.lower():
# Remove diferencia peso
query.pop(6)
query.pop(5)
# Remove compromiso
query.pop(4)
# Remove cumplimiento dieta
query.pop(3)
# Remove cumplimiento entrenamiento
query.pop(2)
# Remove objetivo
query.pop(1)
elif cluster_esfuerzo_dieta.lower() == 'no data'.lower():
# Remove esfuerzo dieta
query.pop(0)
return query