TCA / app.py
Jfink09's picture
Update app.py
a1d5259 verified
raw
history blame
2.77 kB
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
class RegressionModel2(nn.Module):
def __init__(self, input_dim2, hidden_dim2, output_dim2):
super(RegressionModel2, self).__init__()
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the trained model
model2 = RegressionModel2(3, 32, 1)
model2.load_state_dict(torch.load('model.pt'))
model2.eval()
def predict_astigmatism(age, aca_magnitude, aca_axis):
input_data = torch.tensor([[age, aca_magnitude, aca_axis]], dtype=torch.float32)
output = model2(input_data)
return output.item()
def main():
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
st.markdown(
"""
<style>
.navbar {
display: flex;
justify-content: space-between;
align-items: center;
background-color: #f2f2f2;
padding: 10px;
}
.logo img {
height: 50px;
}
.menu {
list-style-type: none;
display: flex;
}
.menu li {
margin-left: 20px;
}
.text-content {
margin-top: 50px;
text-align: center;
}
.button {
margin-top: 20px;
padding: 10px 20px;
font-size: 16px;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown(
"""
<body>
<header>
<nav class="navbar">
<div class="logo"><img src="iol.png" alt="Image description"></div>
<ul class="menu">
<li><a href="#">Home</a></li>
<li><a href="#">About</a></li>
<li><a href="#">Contact</a></li>
</ul>
</nav>
<div class="text-content">
<h2>Enter Variables</h2>
<br>
</div>
</header>
</body>
""",
unsafe_allow_html=True
)
age = st.number_input('Enter Patient Age:', min_value=0, step=1)
aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
aca_axis = st.number_input('Enter ACA Axis:', min_value=0, max_value=180, step=1)
if st.button('Predict!'):
astigmatism = predict_astigmatism(age, aca_magnitude, aca_axis)
st.success(f'Predicted Astigmatism: {astigmatism:.4f}')
if __name__ == '__main__':
main()