File size: 2,768 Bytes
db7295e
e9fb974
446d568
db7295e
e9fb974
 
db7295e
 
 
 
 
e9fb974
db7295e
e9fb974
db7295e
 
 
 
 
 
 
 
e9fb974
 
db7295e
e9fb974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d5259
e9fb974
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score

class RegressionModel2(nn.Module):
    def __init__(self, input_dim2, hidden_dim2, output_dim2):
        super(RegressionModel2, self).__init__()
        self.fc1 = nn.Linear(input_dim2, hidden_dim2)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim2, output_dim2)
        self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)

    def forward(self, x2):
        out = self.fc1(x2)
        out = self.relu1(out)
        out = self.batch_norm1(out)
        out = self.fc2(out)
        return out

# Load the trained model
model2 = RegressionModel2(3, 32, 1)
model2.load_state_dict(torch.load('model.pt'))
model2.eval()

def predict_astigmatism(age, aca_magnitude, aca_axis):
    input_data = torch.tensor([[age, aca_magnitude, aca_axis]], dtype=torch.float32)
    output = model2(input_data)
    return output.item()

def main():
    st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
    st.markdown(
        """
        <style>
        .navbar {
            display: flex;
            justify-content: space-between;
            align-items: center;
            background-color: #f2f2f2;
            padding: 10px;
        }
        .logo img {
            height: 50px;
        }
        .menu {
            list-style-type: none;
            display: flex;
        }
        .menu li {
            margin-left: 20px;
        }
        .text-content {
            margin-top: 50px;
            text-align: center;
        }
        .button {
            margin-top: 20px;
            padding: 10px 20px;
            font-size: 16px;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    st.markdown(
        """
        <body>
        <header>
        <nav class="navbar">
        <div class="logo"><img src="iol.png" alt="Image description"></div>
        <ul class="menu">
        <li><a href="#">Home</a></li>
        <li><a href="#">About</a></li>
        <li><a href="#">Contact</a></li>
        </ul>
        </nav>
        <div class="text-content">
        <h2>Enter Variables</h2>
        <br>
        </div>
        </header>
        </body>
        """,
        unsafe_allow_html=True
    )

    age = st.number_input('Enter Patient Age:', min_value=0, step=1)
    aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
    aca_axis = st.number_input('Enter ACA Axis:', min_value=0, max_value=180, step=1)

    if st.button('Predict!'):
        astigmatism = predict_astigmatism(age, aca_magnitude, aca_axis)
        st.success(f'Predicted Astigmatism: {astigmatism:.4f}')

if __name__ == '__main__':
    main()