TCA / app.py
Jfink09's picture
Update app.py
62251f9 verified
raw
history blame
3.35 kB
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
class RegressionModel2(nn.Module):
def __init__(self, input_dim2, hidden_dim2, output_dim2):
super(RegressionModel2, self).__init__()
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the saved model state dictionary
model = RegressionModel2(3, 32, 1)
model.load_state_dict(torch.load('model.pt'))
model.eval() # Set the model to evaluation mode
# Define a function to make predictions
def predict_astigmatism(age, axis, aca):
"""
This function takes three arguments (age, axis, aca) as input,
converts them to a tensor, makes a prediction using the loaded model,
and returns the predicted value.
"""
# Prepare the input data
data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
# Make prediction
with torch.no_grad():
prediction = model(data)
# Return the predicted value
return prediction.item()
def main():
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
st.markdown(
"""
<style>
.navbar {
display: flex;
justify-content: space-between;
align-items: center;
background-color: #f2f2f2;
padding: 10px;
}
.logo img {
height: 50px;
}
.menu {
list-style-type: none;
display: flex;
}
.menu li {
margin-left: 20px;
}
.text-content {
margin-top: 50px;
text-align: center;
}
.button {
margin-top: 20px;
padding: 10px 20px;
font-size: 16px;
}
</style>
""",
unsafe_allow_html=True
)
# st.markdown(
# """
# <body>
# <header>
# <nav class="navbar">
# <div class="logo"><img src="iol.png" alt="Image description"></div>
# <ul class="menu">
# <li><a href="#">Home</a></li>
# <li><a href="#">About</a></li>
# <li><a href="#">Contact</a></li>
# </ul>
# </nav>
# <div class="text-content">
# <h2>Enter Variables</h2>
# <br>
# </div>
# </header>
# </body>
# """,
# unsafe_allow_html=True
# )
age = st.number_input('Enter Patient Age:', step=0.1)
aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
aca_axis = st.number_input('Enter ACA Axis:', step=0.1)
if st.button('Predict!'):
astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
if __name__ == '__main__':
main()