File size: 3,346 Bytes
db7295e
e9fb974
446d568
db7295e
e9fb974
 
db7295e
 
 
 
 
e9fb974
db7295e
e9fb974
db7295e
 
 
 
 
 
 
 
970f4ce
0cd1b6c
970f4ce
 
e9fb974
970f4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9fb974
 
 
580ce8d
22f0baf
e9fb974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35252a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9fb974
093d49d
7849b98
093d49d
e9fb974
 
f74284c
62251f9
e9fb974
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score

class RegressionModel2(nn.Module):
    def __init__(self, input_dim2, hidden_dim2, output_dim2):
        super(RegressionModel2, self).__init__()
        self.fc1 = nn.Linear(input_dim2, hidden_dim2)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim2, output_dim2)
        self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)

    def forward(self, x2):
        out = self.fc1(x2)
        out = self.relu1(out)
        out = self.batch_norm1(out)
        out = self.fc2(out)
        return out

# Load the saved model state dictionary
model = RegressionModel2(3, 32, 1)
model.load_state_dict(torch.load('model.pt'))
model.eval()  # Set the model to evaluation mode

# Define a function to make predictions
def predict_astigmatism(age, axis, aca):
  """
  This function takes three arguments (age, axis, aca) as input,
  converts them to a tensor, makes a prediction using the loaded model,
  and returns the predicted value.
  """
  # Prepare the input data
  data = torch.tensor([[age, axis, aca]], dtype=torch.float32)

  # Make prediction
  with torch.no_grad():
    prediction = model(data)

  # Return the predicted value
  return prediction.item()

def main():
    st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
    st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
    st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
    st.markdown(
        """
        <style>
        .navbar {
            display: flex;
            justify-content: space-between;
            align-items: center;
            background-color: #f2f2f2;
            padding: 10px;
        }
        .logo img {
            height: 50px;
        }
        .menu {
            list-style-type: none;
            display: flex;
        }
        .menu li {
            margin-left: 20px;
        }
        .text-content {
            margin-top: 50px;
            text-align: center;
        }
        .button {
            margin-top: 20px;
            padding: 10px 20px;
            font-size: 16px;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    # st.markdown(
    #     """
    #     <body>
    #     <header>
    #     <nav class="navbar">
    #     <div class="logo"><img src="iol.png" alt="Image description"></div>
    #     <ul class="menu">
    #     <li><a href="#">Home</a></li>
    #     <li><a href="#">About</a></li>
    #     <li><a href="#">Contact</a></li>
    #     </ul>
    #     </nav>
    #     <div class="text-content">
    #     <h2>Enter Variables</h2>
    #     <br>
    #     </div>
    #     </header>
    #     </body>
    #     """,
    #     unsafe_allow_html=True
    # )

    age = st.number_input('Enter Patient Age:', step=0.1)
    aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
    aca_axis = st.number_input('Enter ACA Axis:', step=0.1)

    if st.button('Predict!'):
        astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
        st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')

if __name__ == '__main__':
    main()