File size: 3,346 Bytes
db7295e e9fb974 446d568 db7295e e9fb974 db7295e e9fb974 db7295e e9fb974 db7295e 970f4ce 0cd1b6c 970f4ce e9fb974 970f4ce e9fb974 580ce8d 22f0baf e9fb974 35252a1 e9fb974 093d49d 7849b98 093d49d e9fb974 f74284c 62251f9 e9fb974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
class RegressionModel2(nn.Module):
def __init__(self, input_dim2, hidden_dim2, output_dim2):
super(RegressionModel2, self).__init__()
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the saved model state dictionary
model = RegressionModel2(3, 32, 1)
model.load_state_dict(torch.load('model.pt'))
model.eval() # Set the model to evaluation mode
# Define a function to make predictions
def predict_astigmatism(age, axis, aca):
"""
This function takes three arguments (age, axis, aca) as input,
converts them to a tensor, makes a prediction using the loaded model,
and returns the predicted value.
"""
# Prepare the input data
data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
# Make prediction
with torch.no_grad():
prediction = model(data)
# Return the predicted value
return prediction.item()
def main():
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
st.markdown(
"""
<style>
.navbar {
display: flex;
justify-content: space-between;
align-items: center;
background-color: #f2f2f2;
padding: 10px;
}
.logo img {
height: 50px;
}
.menu {
list-style-type: none;
display: flex;
}
.menu li {
margin-left: 20px;
}
.text-content {
margin-top: 50px;
text-align: center;
}
.button {
margin-top: 20px;
padding: 10px 20px;
font-size: 16px;
}
</style>
""",
unsafe_allow_html=True
)
# st.markdown(
# """
# <body>
# <header>
# <nav class="navbar">
# <div class="logo"><img src="iol.png" alt="Image description"></div>
# <ul class="menu">
# <li><a href="#">Home</a></li>
# <li><a href="#">About</a></li>
# <li><a href="#">Contact</a></li>
# </ul>
# </nav>
# <div class="text-content">
# <h2>Enter Variables</h2>
# <br>
# </div>
# </header>
# </body>
# """,
# unsafe_allow_html=True
# )
age = st.number_input('Enter Patient Age:', step=0.1)
aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
aca_axis = st.number_input('Enter ACA Axis:', step=0.1)
if st.button('Predict!'):
astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
if __name__ == '__main__':
main() |