TCA / app.py
Jfink09's picture
Update app.py
fb9812b verified
raw
history blame
6.82 kB
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
class RegressionModel2(nn.Module):
def __init__(self, input_dim2, hidden_dim2, output_dim2):
super(RegressionModel2, self).__init__()
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
def forward(self, x2):
out = self.fc1(x2)
out = self.relu1(out)
out = self.batch_norm1(out)
out = self.fc2(out)
return out
# Load the saved model state dictionary
model = RegressionModel2(3, 32, 1)
model.load_state_dict(torch.load('model.pt'))
model.eval() # Set the model to evaluation mode
# Define a function to make predictions
def predict_astigmatism(age, axis, aca):
"""
This function takes three arguments (age, axis, aca) as input,
converts them to a tensor, makes a prediction using the loaded model,
and returns the predicted value.
"""
# Prepare the input data
data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
# Make prediction
with torch.no_grad():
prediction = model(data)
# Return the predicted value
return prediction.item()
# def main():
# st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
# st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
# st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
# st.markdown(
# """
# <style>
# .navbar {
# display: flex;
# justify-content: space-between;
# align-items: center;
# background-color: #f2f2f2;
# padding: 10px;
# }
# .logo img {
# height: 50px;
# }
# .menu {
# list-style-type: none;
# display: flex;
# }
# .menu li {
# margin-left: 20px;
# }
# .text-content {
# margin-top: 50px;
# text-align: center;
# }
# .button {
# margin-top: 20px;
# padding: 10px 20px;
# font-size: 16px;
# }
# </style>
# """,
# unsafe_allow_html=True
# )
# # st.markdown(
# # """
# # <body>
# # <header>
# # <nav class="navbar">
# # <div class="logo"><img src="iol.png" alt="Image description"></div>
# # <ul class="menu">
# # <li><a href="#">Home</a></li>
# # <li><a href="#">About</a></li>
# # <li><a href="#">Contact</a></li>
# # </ul>
# # </nav>
# # <div class="text-content">
# # <h2>Enter Variables</h2>
# # <br>
# # </div>
# # </header>
# # </body>
# # """,
# # unsafe_allow_html=True
# # )
# age = st.number_input('Enter Patient Age:', step=0.1)
# aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
# aca_axis = st.number_input('Enter ACA Axis:', step=0.1)
# if st.button('Predict!'):
# astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
# st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
# if __name__ == '__main__':
# main()
def main():
st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
st.markdown(
"""
<style>
.navbar {
display: flex;
justify-content: space-between;
align-items: center;
background-color: #f2f2f2;
padding: 10px;
}
.logo img {
height: 50px;
}
.menu {
list-style-type: none;
display: flex;
}
.menu li {
margin-left: 20px;
}
.text-content {
margin-top: 50px;
text-align: center;
}
.button {
margin-top: 20px;
padding: 10px 20px;
font-size: 16px;
}
.error {
color: red;
font-weight: bold;
}
</style>
""",
unsafe_allow_html=True
)
# Use session state to store input values
if 'age' not in st.session_state:
st.session_state.age = None
if 'aca_magnitude' not in st.session_state:
st.session_state.aca_magnitude = None
if 'aca_axis' not in st.session_state:
st.session_state.aca_axis = None
# Age input
age = st.number_input('Enter Patient Age (15-90 Years):', min_value=18.0, max_value=90.0, step=0.1, value=st.session_state.age)
if age != st.session_state.age:
st.session_state.age = age
if age is not None and (age < 18 or age > 90):
st.markdown('<p class="error">Error: Age must be between 18 and 90.</p>', unsafe_allow_html=True)
# ACA Magnitude input
aca_magnitude = st.number_input('Enter ACA Magnitude (0-10 Diopters):', min_value=0.0, max_value=10.0, step=0.1, value=st.session_state.aca_magnitude)
if aca_magnitude != st.session_state.aca_magnitude:
st.session_state.aca_magnitude = aca_magnitude
if aca_magnitude is not None and (aca_magnitude < 0 or aca_magnitude > 10):
st.markdown('<p class="error">Error: ACA Magnitude must be between 0 and 10.</p>', unsafe_allow_html=True)
# ACA Axis input
aca_axis = st.number_input('Enter ACA Axis (0-180 Degrees):', min_value=0.0, max_value=180.0, step=0.1, value=st.session_state.aca_axis)
if aca_axis != st.session_state.aca_axis:
st.session_state.aca_axis = aca_axis
if aca_axis is not None and (aca_axis < 0 or aca_axis > 180):
st.markdown('<p class="error">Error: ACA Axis must be between 0 and 180.</p>', unsafe_allow_html=True)
if st.button('Predict!'):
if age is not None and aca_magnitude is not None and aca_axis is not None:
if 18 <= age <= 90 and 0 <= aca_magnitude <= 10 and 0 <= aca_axis <= 180:
astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
else:
st.error('Please correct the input errors before predicting.')
else:
st.error('Please fill in all fields before predicting.')
if __name__ == '__main__':
main()