File size: 6,817 Bytes
b8d173a
 
 
 
 
 
afe13a1
b8d173a
 
 
 
 
 
 
afe13a1
b8d173a
 
 
 
 
 
afe13a1
b8d173a
 
 
 
afe13a1
b8d173a
 
 
 
 
 
 
 
 
afe13a1
b8d173a
 
 
afe13a1
b8d173a
 
afe13a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9812b
 
 
afe13a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9fb974
 
 
580ce8d
22f0baf
e9fb974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe13a1
 
 
 
e9fb974
 
 
 
 
1e7740a
 
 
 
 
 
 
 
 
fb9812b
1e7740a
 
 
afe13a1
 
1e7740a
fb9812b
1e7740a
 
 
afe13a1
 
1e7740a
fb9812b
1e7740a
 
 
afe13a1
e9fb974
 
1e7740a
 
 
 
 
 
afe13a1
1e7740a
e9fb974
 
afe13a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score

class RegressionModel2(nn.Module):
    def __init__(self, input_dim2, hidden_dim2, output_dim2):
        super(RegressionModel2, self).__init__()
        self.fc1 = nn.Linear(input_dim2, hidden_dim2)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim2, output_dim2)
        self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)

    def forward(self, x2):
        out = self.fc1(x2)
        out = self.relu1(out)
        out = self.batch_norm1(out)
        out = self.fc2(out)
        return out

# Load the saved model state dictionary
model = RegressionModel2(3, 32, 1)
model.load_state_dict(torch.load('model.pt'))
model.eval()  # Set the model to evaluation mode

# Define a function to make predictions
def predict_astigmatism(age, axis, aca):
  """
  This function takes three arguments (age, axis, aca) as input,
  converts them to a tensor, makes a prediction using the loaded model,
  and returns the predicted value.
  """
  # Prepare the input data
  data = torch.tensor([[age, axis, aca]], dtype=torch.float32)

  # Make prediction
  with torch.no_grad():
    prediction = model(data)

  # Return the predicted value
  return prediction.item()

# def main():
#     st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
#     st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
#     st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
#     st.markdown(
#         """
#         <style>
#         .navbar {
#             display: flex;
#             justify-content: space-between;
#             align-items: center;
#             background-color: #f2f2f2;
#             padding: 10px;
#         }
#         .logo img {
#             height: 50px;
#         }
#         .menu {
#             list-style-type: none;
#             display: flex;
#         }
#         .menu li {
#             margin-left: 20px;
#         }
#         .text-content {
#             margin-top: 50px;
#             text-align: center;
#         }
#         .button {
#             margin-top: 20px;
#             padding: 10px 20px;
#             font-size: 16px;
#         }
#         </style>
#         """,
#         unsafe_allow_html=True
#     )

#     # st.markdown(
#     #     """
#     #     <body>
#     #     <header>
#     #     <nav class="navbar">
#     #     <div class="logo"><img src="iol.png" alt="Image description"></div>
#     #     <ul class="menu">
#     #     <li><a href="#">Home</a></li>
#     #     <li><a href="#">About</a></li>
#     #     <li><a href="#">Contact</a></li>
#     #     </ul>
#     #     </nav>
#     #     <div class="text-content">
#     #     <h2>Enter Variables</h2>
#     #     <br>
#     #     </div>
#     #     </header>
#     #     </body>
#     #     """,
#     #     unsafe_allow_html=True
#     # )

#     age = st.number_input('Enter Patient Age:', step=0.1)
#     aca_magnitude = st.number_input('Enter ACA Magnitude:', step=0.1)
#     aca_axis = st.number_input('Enter ACA Axis:', step=0.1)

#     if st.button('Predict!'):
#         astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
#         st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')

# if __name__ == '__main__':
#     main()















def main():
    st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
    st.write('<style>.st-emotion-cache-1dp5vir.ezrtsby1 { display: none; }</style>', unsafe_allow_html=True)
    st.write("""<style>.st-emotion-cache-czk5ss.e16jpq800 {display: none;}</style>""", unsafe_allow_html=True)
    st.markdown(
        """
        <style>
        .navbar {
            display: flex;
            justify-content: space-between;
            align-items: center;
            background-color: #f2f2f2;
            padding: 10px;
        }
        .logo img {
            height: 50px;
        }
        .menu {
            list-style-type: none;
            display: flex;
        }
        .menu li {
            margin-left: 20px;
        }
        .text-content {
            margin-top: 50px;
            text-align: center;
        }
        .button {
            margin-top: 20px;
            padding: 10px 20px;
            font-size: 16px;
        }
        .error {
            color: red;
            font-weight: bold;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

    # Use session state to store input values
    if 'age' not in st.session_state:
        st.session_state.age = None
    if 'aca_magnitude' not in st.session_state:
        st.session_state.aca_magnitude = None
    if 'aca_axis' not in st.session_state:
        st.session_state.aca_axis = None

    # Age input
    age = st.number_input('Enter Patient Age (15-90 Years):', min_value=18.0, max_value=90.0, step=0.1, value=st.session_state.age)
    if age != st.session_state.age:
        st.session_state.age = age
    if age is not None and (age < 18 or age > 90):
        st.markdown('<p class="error">Error: Age must be between 18 and 90.</p>', unsafe_allow_html=True)

    # ACA Magnitude input
    aca_magnitude = st.number_input('Enter ACA Magnitude (0-10 Diopters):', min_value=0.0, max_value=10.0, step=0.1, value=st.session_state.aca_magnitude)
    if aca_magnitude != st.session_state.aca_magnitude:
        st.session_state.aca_magnitude = aca_magnitude
    if aca_magnitude is not None and (aca_magnitude < 0 or aca_magnitude > 10):
        st.markdown('<p class="error">Error: ACA Magnitude must be between 0 and 10.</p>', unsafe_allow_html=True)

    # ACA Axis input
    aca_axis = st.number_input('Enter ACA Axis (0-180 Degrees):', min_value=0.0, max_value=180.0, step=0.1, value=st.session_state.aca_axis)
    if aca_axis != st.session_state.aca_axis:
        st.session_state.aca_axis = aca_axis
    if aca_axis is not None and (aca_axis < 0 or aca_axis > 180):
        st.markdown('<p class="error">Error: ACA Axis must be between 0 and 180.</p>', unsafe_allow_html=True)

    if st.button('Predict!'):
        if age is not None and aca_magnitude is not None and aca_axis is not None:
            if 18 <= age <= 90 and 0 <= aca_magnitude <= 10 and 0 <= aca_axis <= 180:
                astigmatism = predict_astigmatism(age, aca_axis, aca_magnitude)
                st.success(f'Predicted Total Corneal Astigmatism: {astigmatism:.4f}')
            else:
                st.error('Please correct the input errors before predicting.')
        else:
            st.error('Please fill in all fields before predicting.')

if __name__ == '__main__':
    main()