Jfink09 commited on
Commit
b8d173a
·
verified ·
1 Parent(s): afe13a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -43
app.py CHANGED
@@ -1,46 +1,46 @@
1
- # import streamlit as st
2
- # import pandas as pd
3
- # import torch
4
- # import torch.nn as nn
5
- # import torch.optim as optim
6
- # from sklearn.metrics import r2_score
7
-
8
- # class RegressionModel2(nn.Module):
9
- # def __init__(self, input_dim2, hidden_dim2, output_dim2):
10
- # super(RegressionModel2, self).__init__()
11
- # self.fc1 = nn.Linear(input_dim2, hidden_dim2)
12
- # self.relu1 = nn.ReLU()
13
- # self.fc2 = nn.Linear(hidden_dim2, output_dim2)
14
- # self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
15
-
16
- # def forward(self, x2):
17
- # out = self.fc1(x2)
18
- # out = self.relu1(out)
19
- # out = self.batch_norm1(out)
20
- # out = self.fc2(out)
21
- # return out
22
-
23
- # # Load the saved model state dictionary
24
- # model = RegressionModel2(3, 32, 1)
25
- # model.load_state_dict(torch.load('model.pt'))
26
- # model.eval() # Set the model to evaluation mode
27
-
28
- # # Define a function to make predictions
29
- # def predict_astigmatism(age, axis, aca):
30
- # """
31
- # This function takes three arguments (age, axis, aca) as input,
32
- # converts them to a tensor, makes a prediction using the loaded model,
33
- # and returns the predicted value.
34
- # """
35
- # # Prepare the input data
36
- # data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
37
-
38
- # # Make prediction
39
- # with torch.no_grad():
40
- # prediction = model(data)
41
-
42
- # # Return the predicted value
43
- # return prediction.item()
44
 
45
  # def main():
46
  # st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ from sklearn.metrics import r2_score
7
+
8
+ class RegressionModel2(nn.Module):
9
+ def __init__(self, input_dim2, hidden_dim2, output_dim2):
10
+ super(RegressionModel2, self).__init__()
11
+ self.fc1 = nn.Linear(input_dim2, hidden_dim2)
12
+ self.relu1 = nn.ReLU()
13
+ self.fc2 = nn.Linear(hidden_dim2, output_dim2)
14
+ self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
15
+
16
+ def forward(self, x2):
17
+ out = self.fc1(x2)
18
+ out = self.relu1(out)
19
+ out = self.batch_norm1(out)
20
+ out = self.fc2(out)
21
+ return out
22
+
23
+ # Load the saved model state dictionary
24
+ model = RegressionModel2(3, 32, 1)
25
+ model.load_state_dict(torch.load('model.pt'))
26
+ model.eval() # Set the model to evaluation mode
27
+
28
+ # Define a function to make predictions
29
+ def predict_astigmatism(age, axis, aca):
30
+ """
31
+ This function takes three arguments (age, axis, aca) as input,
32
+ converts them to a tensor, makes a prediction using the loaded model,
33
+ and returns the predicted value.
34
+ """
35
+ # Prepare the input data
36
+ data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
37
+
38
+ # Make prediction
39
+ with torch.no_grad():
40
+ prediction = model(data)
41
+
42
+ # Return the predicted value
43
+ return prediction.item()
44
 
45
  # def main():
46
  # st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')