Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
|
45 |
# def main():
|
46 |
# st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from sklearn.metrics import r2_score
|
7 |
+
|
8 |
+
class RegressionModel2(nn.Module):
|
9 |
+
def __init__(self, input_dim2, hidden_dim2, output_dim2):
|
10 |
+
super(RegressionModel2, self).__init__()
|
11 |
+
self.fc1 = nn.Linear(input_dim2, hidden_dim2)
|
12 |
+
self.relu1 = nn.ReLU()
|
13 |
+
self.fc2 = nn.Linear(hidden_dim2, output_dim2)
|
14 |
+
self.batch_norm1 = nn.BatchNorm1d(hidden_dim2)
|
15 |
+
|
16 |
+
def forward(self, x2):
|
17 |
+
out = self.fc1(x2)
|
18 |
+
out = self.relu1(out)
|
19 |
+
out = self.batch_norm1(out)
|
20 |
+
out = self.fc2(out)
|
21 |
+
return out
|
22 |
+
|
23 |
+
# Load the saved model state dictionary
|
24 |
+
model = RegressionModel2(3, 32, 1)
|
25 |
+
model.load_state_dict(torch.load('model.pt'))
|
26 |
+
model.eval() # Set the model to evaluation mode
|
27 |
+
|
28 |
+
# Define a function to make predictions
|
29 |
+
def predict_astigmatism(age, axis, aca):
|
30 |
+
"""
|
31 |
+
This function takes three arguments (age, axis, aca) as input,
|
32 |
+
converts them to a tensor, makes a prediction using the loaded model,
|
33 |
+
and returns the predicted value.
|
34 |
+
"""
|
35 |
+
# Prepare the input data
|
36 |
+
data = torch.tensor([[age, axis, aca]], dtype=torch.float32)
|
37 |
+
|
38 |
+
# Make prediction
|
39 |
+
with torch.no_grad():
|
40 |
+
prediction = model(data)
|
41 |
+
|
42 |
+
# Return the predicted value
|
43 |
+
return prediction.item()
|
44 |
|
45 |
# def main():
|
46 |
# st.set_page_config(page_title='Astigmatism Prediction', page_icon=':eyeglasses:', layout='wide')
|