File size: 4,438 Bytes
ef9fe45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a4042c
ef9fe45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a4042c
ef9fe45
 
 
0a4042c
ef9fe45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a4042c
ef9fe45
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from pathlib import Path

import altair as alt
import numpy as np
import pandas as pd
import solara
import sympy as sp

#
P1, P2, PT, k_on, k_off, kD = sp.symbols("P_1 P_2 P_T k_on k_off k_D", positive=True)

sol = sp.solve(
    [
        -2 * k_on * P1 * P1 + 2 * k_off * P2,
        P1 + 2 * P2 - PT,
        (k_off / k_on) - kD,
    ],
    [P1, P2, k_on, k_off],
    dict=True,
)

solve_for = [P1, P2]
inputs = [PT, kD]

lambdas = {s: sp.lambdify(inputs, sol[0][s]) for s in solve_for}
ld_total = sp.lambdify(inputs, sol[0][P1] + sol[0][P2])


def make_chart(df: pd.DataFrame, dark: bool) -> alt.Chart:
    source = df.melt("PT", var_name="species", value_name="y")

    # Create a selection that chooses the nearest point & selects based on x-value
    nearest = alt.selection_point(
        nearest=True, on="pointerover", fields=["PT"], empty=False
    )

    # The basic line
    line = (
        alt.Chart(source)
        .mark_line(interpolate="basis")
        .encode(
            x=alt.X("PT:Q", scale=alt.Scale(type="log"), title="Ratio PT/kD"),
            y=alt.Y("y:Q", title="Fraction of total"),
            color="species:N",
        )
        .properties(width="container")
    )

    # Draw points on the line, and highlight based on selection
    points = (
        line.mark_point()
        .encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
        .properties(width="container")
    )

    # Draw a rule at the location of the selection
    rule_color = "white" if dark else "black"
    rules = (
        alt.Chart(source)
        .transform_pivot("species", value="y", groupby=["PT"])
        .mark_rule(color=rule_color)
        .encode(
            x="PT:Q",
            opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
            tooltip=[
                alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns
            ],
        )
        .add_params(nearest)
        .properties(width="container")
    )

    # Put the five layers into a chart and bind the data
    chart = (
        alt.layer(line, points, rules)
        .properties(height=300)
        .configure(autosize="fit-x")
    )

    return chart


md = """
This app calculates monomer and dimer concentrations given a total amount of protomer PT and the 
dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab).
"""


@solara.component
def Page():
    solara.Style(Path("style.css"))

    dark_effective = solara.lab.use_dark_effective()
    if dark_effective is True:
        alt.themes.enable("dark")

    elif dark_effective is False:
        alt.themes.enable("default")

    PT = solara.use_reactive(10.0)
    kD = solara.use_reactive(1.0)

    vmin = solara.use_reactive(-1)
    vmax = solara.use_reactive(3)

    ans = {k: ld(PT.value, kD.value) for k, ld in lambdas.items()}

    solara.Title("Dimerization Kinetics")
    with solara.Card("Calculate concentrations from kD"):
        solara.Markdown(md)
        with solara.GridFixed(columns=2):
            with solara.Tooltip("Total protomer concentration"):
                solara.InputFloat("PT", value=PT)
            with solara.Tooltip("Dissociation constant"):
                solara.InputFloat("kD", value=kD)
            solara.Markdown(f"### Concentration monomer: {ans[P1]:.2f}")
            solara.Markdown(f"### Concentration dimer: {ans[P2]:.2f}")

    # create a vector of PT values ranging from 0.1 times kD to 1000 times kD
    def update():
        PT_values = np.logspace(vmin.value, vmax.value, endpoint=True, num=100)
        ans = {
            k: ld(PT_values, 1) / ld_total(PT_values, 1) for k, ld in lambdas.items()
        }

        # put the results in a dataframe, together with input PT values
        df = pd.DataFrame(dict(PT=PT_values) | {k.name: v for k, v in ans.items()})
        return make_chart(df, dark_effective)

    chart = solara.use_memo(update, [vmin.value, vmax.value])

    with solara.Card("Fraction monomer/dimer vs ratio over kD"):
        with solara.Row():
            with solara.Tooltip("X axis lower limit (log10)"):
                solara.InputFloat("xmin", value=vmin)
            with solara.Tooltip("X axis upper limit (log10)"):
                solara.InputFloat("xmax", value=vmax)
        solara.HTML(tag="div", style="height: 10px")
        solara.FigureAltair(chart)