Spaces:
Runtime error
Runtime error
add mdr version 1
Browse files- monomer_dimer_ribosome.py +188 -0
monomer_dimer_ribosome.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import numpy as np
|
3 |
+
import sympy as sp
|
4 |
+
from scipy.optimize import root_scalar
|
5 |
+
import ultraplot as uplt
|
6 |
+
from smitfit.symbol import Symbols
|
7 |
+
from smitfit.model import Model
|
8 |
+
import polars as pl
|
9 |
+
# %%
|
10 |
+
|
11 |
+
s = Symbols("TF1, TF2, TFR, R, T_TF, T_R, kD_MD, kD_MR", positive=True)
|
12 |
+
# %%
|
13 |
+
mb_ribosome = s.TFR + s.R - s.T_R # type: ignore
|
14 |
+
mb_TF = s.TF1 + 2 * s.TF2 + s.TFR - s.T_TF # type: ignore
|
15 |
+
eq_MD = s.TF1**2 - s.kD_MD * s.TF2 # type: ignore
|
16 |
+
eq_MR = (s.TF1 * s.R) - s.kD_MR * s.TFR # type: ignore
|
17 |
+
|
18 |
+
#
|
19 |
+
knowns = ["T_TF", "T_R", "kD_MD", "kD_MR"]
|
20 |
+
|
21 |
+
# solve for: TF1
|
22 |
+
# take Monomer-dimer equillibrium, put it in mass balance TF to eliminate TF2
|
23 |
+
sub_TF2 = (s.TF2, sp.solve(eq_MD, s.TF2)[0])
|
24 |
+
|
25 |
+
# same for monomer dimer, eliminate TF_R
|
26 |
+
sub_mb = (s.R, sp.solve(mb_ribosome, s.R)[0])
|
27 |
+
sub_TFR = (s.TFR, sp.solve(eq_MR.subs(*sub_mb), s.TFR)[0])
|
28 |
+
|
29 |
+
# we know have an expr to find free TF monomer
|
30 |
+
eq_TF1 = mb_TF.subs([sub_TF2, sub_TFR])
|
31 |
+
eq_TF1
|
32 |
+
|
33 |
+
|
34 |
+
# %%
|
35 |
+
|
36 |
+
d = {
|
37 |
+
s.TF2: sp.solve(eq_MD, s.TF2)[0],
|
38 |
+
s.TFR: sp.solve(mb_TF, s.TFR)[0],
|
39 |
+
s.R: sp.solve(mb_ribosome, s.R)[0],
|
40 |
+
}
|
41 |
+
m = Model(d)
|
42 |
+
|
43 |
+
# %%
|
44 |
+
|
45 |
+
ld = sp.lambdify([s.TF1] + [s[k] for k in knowns], eq_TF1)
|
46 |
+
|
47 |
+
# %%
|
48 |
+
|
49 |
+
|
50 |
+
def solve_system(params: dict) -> dict:
|
51 |
+
args = tuple(params[k] for k in knowns)
|
52 |
+
# root find TF1
|
53 |
+
sol = root_scalar(ld, bracket=(0, params["T_TF"]), args=args)
|
54 |
+
# calculate the others
|
55 |
+
ans = m(**params, TF1=sol.root)
|
56 |
+
|
57 |
+
return {"TF1": sol.root, **ans}
|
58 |
+
|
59 |
+
|
60 |
+
def make_df(records: list[dict]) -> pl.DataFrame:
|
61 |
+
df = pl.DataFrame(records)
|
62 |
+
cols = [
|
63 |
+
(pl.col("TF1") + pl.col("TF2") + pl.col("TFR")).alias("total TF"),
|
64 |
+
(pl.col("TFR") + pl.col("R")).alias("total R"),
|
65 |
+
]
|
66 |
+
df = df.with_columns(cols)
|
67 |
+
return df
|
68 |
+
|
69 |
+
|
70 |
+
# %%
|
71 |
+
# The concentration of TF exceeds that of ribosomes (∼50 μM and ∼30 μM, respectively)[12,13]
|
72 |
+
# TF binds free ribosomal 50S subunits with a Kd of ∼1 μM
|
73 |
+
# Purified TF forms dimers with a Kd of 1–2 μM (ref. 14).
|
74 |
+
# " Real-time observation of trigger factor function on translating ribosomes", https://doi.org/10.1038/nature05225
|
75 |
+
|
76 |
+
# "the cytosol contains 2.6 moles of trigger factor per mole of ribosomes. "
|
77 |
+
# The “trigger factor cycle” includes ribosomes, presecretory proteins, and the plasma membrane
|
78 |
+
#
|
79 |
+
|
80 |
+
ecoli_params = {
|
81 |
+
"T_TF": 50,
|
82 |
+
"T_R": 30,
|
83 |
+
"kD_MD": 1,
|
84 |
+
"kD_MR": 2,
|
85 |
+
}
|
86 |
+
|
87 |
+
solve_system(ecoli_params)
|
88 |
+
|
89 |
+
# %%
|
90 |
+
|
91 |
+
vmin, vmax = 1e-6, 1000e-6
|
92 |
+
total_tf_protomer = np.logspace(
|
93 |
+
0, 4, endpoint=True, num=100
|
94 |
+
) # total TF protomer from 1 uM to 1
|
95 |
+
|
96 |
+
input_params = [ecoli_params | {"T_TF": v} for v in total_tf_protomer]
|
97 |
+
input_params
|
98 |
+
|
99 |
+
# %%
|
100 |
+
output_records = [solve_system(params) for params in input_params]
|
101 |
+
df = make_df(output_records)
|
102 |
+
|
103 |
+
|
104 |
+
# %%
|
105 |
+
species = ["TF1", "TF2", "TFR"]
|
106 |
+
cycle = iter(uplt.Cycle("default"))
|
107 |
+
fig, axes = uplt.subplots(nrows=2, aspect=2.5, axwidth="120mm")
|
108 |
+
for s in species:
|
109 |
+
axes[0].plot(
|
110 |
+
total_tf_protomer,
|
111 |
+
df.select(pl.col(s) / pl.col("total TF")),
|
112 |
+
label=s,
|
113 |
+
**next(cycle),
|
114 |
+
)
|
115 |
+
|
116 |
+
axes[0].format(title="TF")
|
117 |
+
species = ["TFR", "R"]
|
118 |
+
for s in species:
|
119 |
+
axes[1].plot(
|
120 |
+
total_tf_protomer,
|
121 |
+
df.select(pl.col(s) / pl.col("total R")),
|
122 |
+
label=s,
|
123 |
+
**next(cycle),
|
124 |
+
)
|
125 |
+
axes[1].format(title="ribosome")
|
126 |
+
|
127 |
+
axes.format(
|
128 |
+
ylim=(0, 1),
|
129 |
+
xscale="log",
|
130 |
+
xformatter="sci",
|
131 |
+
ylabel="Fractional population",
|
132 |
+
xlabel="Total protomer TF (uM)",
|
133 |
+
)
|
134 |
+
axes.legend(loc="r", ncols=1)
|
135 |
+
|
136 |
+
# %%
|
137 |
+
# lets repeat for ribosome titration, fixed 100 nM TF protomer concentration
|
138 |
+
|
139 |
+
microscopy_params = {
|
140 |
+
"T_TF": 1, # 100 nM
|
141 |
+
"kD_MD": 1,
|
142 |
+
"kD_MR": 1,
|
143 |
+
}
|
144 |
+
|
145 |
+
# %%
|
146 |
+
|
147 |
+
total_ribosome = np.linspace(0, 5, endpoint=True)
|
148 |
+
input_params = [microscopy_params | {"T_R": v} for v in total_ribosome]
|
149 |
+
|
150 |
+
# %%
|
151 |
+
output_records = [solve_system(params) for params in input_params]
|
152 |
+
df = make_df(output_records)
|
153 |
+
|
154 |
+
# %%
|
155 |
+
species = ["TF1", "TF2", "TFR"]
|
156 |
+
cycle = iter(uplt.Cycle("default"))
|
157 |
+
|
158 |
+
fig, axes = uplt.subplots(nrows=2, aspect=2.5, axwidth="120mm")
|
159 |
+
for s in species:
|
160 |
+
axes[0].plot(
|
161 |
+
total_ribosome,
|
162 |
+
df.select(pl.col(s) / pl.col("total TF")),
|
163 |
+
label=s,
|
164 |
+
**next(cycle),
|
165 |
+
)
|
166 |
+
|
167 |
+
axes[0].format(title="TF")
|
168 |
+
|
169 |
+
species = ["TFR", "R"]
|
170 |
+
for s in species:
|
171 |
+
axes[1].plot(
|
172 |
+
total_ribosome,
|
173 |
+
df.select(pl.col(s) / pl.col("total R")),
|
174 |
+
label=s,
|
175 |
+
**next(cycle),
|
176 |
+
)
|
177 |
+
axes[1].format(title="ribosome")
|
178 |
+
|
179 |
+
axes.format(
|
180 |
+
ylim=(0, 1),
|
181 |
+
# xscale="log",
|
182 |
+
xformatter="sci",
|
183 |
+
ylabel="Fractional population",
|
184 |
+
xlabel="Total protomer TF (uM)",
|
185 |
+
)
|
186 |
+
axes.legend(loc="r", ncols=1)
|
187 |
+
|
188 |
+
# %%
|