Jhsmit commited on
Commit
2080501
·
1 Parent(s): 90ab22d

add mdr version 1

Browse files
Files changed (1) hide show
  1. monomer_dimer_ribosome.py +188 -0
monomer_dimer_ribosome.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ import numpy as np
3
+ import sympy as sp
4
+ from scipy.optimize import root_scalar
5
+ import ultraplot as uplt
6
+ from smitfit.symbol import Symbols
7
+ from smitfit.model import Model
8
+ import polars as pl
9
+ # %%
10
+
11
+ s = Symbols("TF1, TF2, TFR, R, T_TF, T_R, kD_MD, kD_MR", positive=True)
12
+ # %%
13
+ mb_ribosome = s.TFR + s.R - s.T_R # type: ignore
14
+ mb_TF = s.TF1 + 2 * s.TF2 + s.TFR - s.T_TF # type: ignore
15
+ eq_MD = s.TF1**2 - s.kD_MD * s.TF2 # type: ignore
16
+ eq_MR = (s.TF1 * s.R) - s.kD_MR * s.TFR # type: ignore
17
+
18
+ #
19
+ knowns = ["T_TF", "T_R", "kD_MD", "kD_MR"]
20
+
21
+ # solve for: TF1
22
+ # take Monomer-dimer equillibrium, put it in mass balance TF to eliminate TF2
23
+ sub_TF2 = (s.TF2, sp.solve(eq_MD, s.TF2)[0])
24
+
25
+ # same for monomer dimer, eliminate TF_R
26
+ sub_mb = (s.R, sp.solve(mb_ribosome, s.R)[0])
27
+ sub_TFR = (s.TFR, sp.solve(eq_MR.subs(*sub_mb), s.TFR)[0])
28
+
29
+ # we know have an expr to find free TF monomer
30
+ eq_TF1 = mb_TF.subs([sub_TF2, sub_TFR])
31
+ eq_TF1
32
+
33
+
34
+ # %%
35
+
36
+ d = {
37
+ s.TF2: sp.solve(eq_MD, s.TF2)[0],
38
+ s.TFR: sp.solve(mb_TF, s.TFR)[0],
39
+ s.R: sp.solve(mb_ribosome, s.R)[0],
40
+ }
41
+ m = Model(d)
42
+
43
+ # %%
44
+
45
+ ld = sp.lambdify([s.TF1] + [s[k] for k in knowns], eq_TF1)
46
+
47
+ # %%
48
+
49
+
50
+ def solve_system(params: dict) -> dict:
51
+ args = tuple(params[k] for k in knowns)
52
+ # root find TF1
53
+ sol = root_scalar(ld, bracket=(0, params["T_TF"]), args=args)
54
+ # calculate the others
55
+ ans = m(**params, TF1=sol.root)
56
+
57
+ return {"TF1": sol.root, **ans}
58
+
59
+
60
+ def make_df(records: list[dict]) -> pl.DataFrame:
61
+ df = pl.DataFrame(records)
62
+ cols = [
63
+ (pl.col("TF1") + pl.col("TF2") + pl.col("TFR")).alias("total TF"),
64
+ (pl.col("TFR") + pl.col("R")).alias("total R"),
65
+ ]
66
+ df = df.with_columns(cols)
67
+ return df
68
+
69
+
70
+ # %%
71
+ # The concentration of TF exceeds that of ribosomes (∼50 μM and ∼30 μM, respectively)[12,13]
72
+ # TF binds free ribosomal 50S subunits with a Kd of ∼1 μM
73
+ # Purified TF forms dimers with a Kd of 1–2 μM (ref. 14).
74
+ # " Real-time observation of trigger factor function on translating ribosomes", https://doi.org/10.1038/nature05225
75
+
76
+ # "the cytosol contains 2.6 moles of trigger factor per mole of ribosomes. "
77
+ # The “trigger factor cycle” includes ribosomes, presecretory proteins, and the plasma membrane
78
+ #
79
+
80
+ ecoli_params = {
81
+ "T_TF": 50,
82
+ "T_R": 30,
83
+ "kD_MD": 1,
84
+ "kD_MR": 2,
85
+ }
86
+
87
+ solve_system(ecoli_params)
88
+
89
+ # %%
90
+
91
+ vmin, vmax = 1e-6, 1000e-6
92
+ total_tf_protomer = np.logspace(
93
+ 0, 4, endpoint=True, num=100
94
+ ) # total TF protomer from 1 uM to 1
95
+
96
+ input_params = [ecoli_params | {"T_TF": v} for v in total_tf_protomer]
97
+ input_params
98
+
99
+ # %%
100
+ output_records = [solve_system(params) for params in input_params]
101
+ df = make_df(output_records)
102
+
103
+
104
+ # %%
105
+ species = ["TF1", "TF2", "TFR"]
106
+ cycle = iter(uplt.Cycle("default"))
107
+ fig, axes = uplt.subplots(nrows=2, aspect=2.5, axwidth="120mm")
108
+ for s in species:
109
+ axes[0].plot(
110
+ total_tf_protomer,
111
+ df.select(pl.col(s) / pl.col("total TF")),
112
+ label=s,
113
+ **next(cycle),
114
+ )
115
+
116
+ axes[0].format(title="TF")
117
+ species = ["TFR", "R"]
118
+ for s in species:
119
+ axes[1].plot(
120
+ total_tf_protomer,
121
+ df.select(pl.col(s) / pl.col("total R")),
122
+ label=s,
123
+ **next(cycle),
124
+ )
125
+ axes[1].format(title="ribosome")
126
+
127
+ axes.format(
128
+ ylim=(0, 1),
129
+ xscale="log",
130
+ xformatter="sci",
131
+ ylabel="Fractional population",
132
+ xlabel="Total protomer TF (uM)",
133
+ )
134
+ axes.legend(loc="r", ncols=1)
135
+
136
+ # %%
137
+ # lets repeat for ribosome titration, fixed 100 nM TF protomer concentration
138
+
139
+ microscopy_params = {
140
+ "T_TF": 1, # 100 nM
141
+ "kD_MD": 1,
142
+ "kD_MR": 1,
143
+ }
144
+
145
+ # %%
146
+
147
+ total_ribosome = np.linspace(0, 5, endpoint=True)
148
+ input_params = [microscopy_params | {"T_R": v} for v in total_ribosome]
149
+
150
+ # %%
151
+ output_records = [solve_system(params) for params in input_params]
152
+ df = make_df(output_records)
153
+
154
+ # %%
155
+ species = ["TF1", "TF2", "TFR"]
156
+ cycle = iter(uplt.Cycle("default"))
157
+
158
+ fig, axes = uplt.subplots(nrows=2, aspect=2.5, axwidth="120mm")
159
+ for s in species:
160
+ axes[0].plot(
161
+ total_ribosome,
162
+ df.select(pl.col(s) / pl.col("total TF")),
163
+ label=s,
164
+ **next(cycle),
165
+ )
166
+
167
+ axes[0].format(title="TF")
168
+
169
+ species = ["TFR", "R"]
170
+ for s in species:
171
+ axes[1].plot(
172
+ total_ribosome,
173
+ df.select(pl.col(s) / pl.col("total R")),
174
+ label=s,
175
+ **next(cycle),
176
+ )
177
+ axes[1].format(title="ribosome")
178
+
179
+ axes.format(
180
+ ylim=(0, 1),
181
+ # xscale="log",
182
+ xformatter="sci",
183
+ ylabel="Fractional population",
184
+ xlabel="Total protomer TF (uM)",
185
+ )
186
+ axes.legend(loc="r", ncols=1)
187
+
188
+ # %%