Spaces:
Running
Running
from typing import Optional, Union, Tuple | |
import torch | |
from transformers import PreTrainedModel, VisionEncoderDecoderConfig, PretrainedConfig | |
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput | |
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import shift_tokens_right | |
from surya.model.recognition.encoder import DonutSwinModel | |
from surya.model.recognition.decoder import SuryaOCRDecoder, SuryaOCRTextEncoder | |
class OCREncoderDecoderModel(PreTrainedModel): | |
config_class = VisionEncoderDecoderConfig | |
base_model_prefix = "vision_encoder_decoder" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_supports_param_buffer_assignment = False | |
def __init__( | |
self, | |
config: Optional[PretrainedConfig] = None, | |
encoder: Optional[PreTrainedModel] = None, | |
decoder: Optional[PreTrainedModel] = None, | |
text_encoder: Optional[PreTrainedModel] = None, | |
): | |
# initialize with config | |
# make sure input & output embeddings is not tied | |
config.tie_word_embeddings = False | |
config.decoder.tie_word_embeddings = False | |
super().__init__(config) | |
if encoder is None: | |
encoder = DonutSwinModel(config.encoder) | |
if decoder is None: | |
decoder = SuryaOCRDecoder(config.decoder, attn_implementation=config._attn_implementation) | |
if text_encoder is None: | |
text_encoder = SuryaOCRTextEncoder(config.text_encoder, attn_implementation=config._attn_implementation) | |
self.encoder = encoder | |
self.decoder = decoder | |
self.text_encoder = text_encoder | |
# make sure that the individual model's config refers to the shared config | |
# so that the updates to the config will be synced | |
self.encoder.config = self.config.encoder | |
self.decoder.config = self.config.decoder | |
self.text_encoder.config = self.config.text_encoder | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def get_output_embeddings(self): | |
return self.decoder.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
return self.decoder.set_output_embeddings(new_embeddings) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_cache_position: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
**kwargs, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
if encoder_outputs is None: | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
encoder_outputs = self.encoder( | |
pixel_values=pixel_values, | |
**kwargs_encoder, | |
) | |
elif isinstance(encoder_outputs, tuple): | |
encoder_outputs = BaseModelOutput(*encoder_outputs) | |
encoder_hidden_states = encoder_outputs[0] | |
# optionally project encoder_hidden_states | |
if ( | |
self.encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) | |
# else: | |
encoder_attention_mask = None | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
cache_position=decoder_cache_position, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
**kwargs_decoder, | |
) | |
return Seq2SeqLMOutput( | |
logits=decoder_outputs.logits, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state | |
) | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs | |
): | |
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) | |
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None | |
input_dict = { | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"decoder_input_ids": decoder_inputs["input_ids"], | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": decoder_inputs["past_key_values"], | |
"use_cache": use_cache, | |
} | |
return input_dict | |
def resize_token_embeddings(self, *args, **kwargs): | |
raise NotImplementedError( | |
"Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the" | |
" respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))" | |
) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# apply decoder cache reordering here | |
return self.decoder._reorder_cache(past_key_values, beam_idx) |