File size: 5,174 Bytes
77a8694
 
360349c
77a8694
dcd4f06
77a8694
 
 
 
 
dcd4f06
 
 
77a8694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4f06
77a8694
dcd4f06
 
77a8694
dcd4f06
77a8694
dcd4f06
 
 
 
 
 
 
77a8694
dcd4f06
 
 
 
 
77a8694
 
dcd4f06
77a8694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4f06
 
 
 
 
 
 
77a8694
dcd4f06
 
 
 
 
 
 
77a8694
 
dcd4f06
77a8694
 
dcd4f06
77a8694
dcd4f06
 
 
 
77a8694
dcd4f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a8694
 
dcd4f06
 
 
77a8694
 
 
dcd4f06
 
 
 
77a8694
dcd4f06
 
 
 
 
77a8694
 
dcd4f06
77a8694
 
 
 
dcd4f06
 
 
 
 
77a8694
 
dcd4f06
 
 
 
 
 
 
 
77a8694
dcd4f06
 
 
77a8694
 
 
 
 
dcd4f06
 
 
77a8694
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from monitoring import PerformanceMonitor, measure_time

# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct"  # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B"       # Our LoRA adapter

# Initialize performance monitor
monitor = PerformanceMonitor()

print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token

print("Loading base model...")
model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    device_map="auto",
    torch_dtype=torch.float16
)

print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
model.eval()

def format_prompt(problem: str, problem_type: str) -> str:
    """Format input prompt for the model"""
    if problem_type == "Derivative":
        return f"""Given a mathematical function, find its derivative.

Function: {problem}
The derivative of this function is:"""
    elif problem_type == "Addition":
        return f"""Solve this addition problem.

Problem: {problem}
The solution is:"""
    else:  # Roots or Custom
        return f"""Find the derivative of this function.

Function: {problem}
The derivative is:"""

@measure_time
def generate_derivative(problem: str, problem_type: str, max_length: int = 200) -> str:
    """Generate derivative for a given function"""
    # Format the prompt
    prompt = format_prompt(problem, problem_type)
    
    # Tokenize
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # Generate
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_length=max_length,
            num_return_sequences=1,
            temperature=0.1,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    # Decode and extract derivative
    generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
    derivative = generated[len(prompt):].strip()
    
    return derivative

def solve_problem(problem: str, problem_type: str) -> tuple:
    """Solve problem and format output"""
    if not problem:
        return "Please enter a problem", None
    
    # Record problem type
    monitor.record_problem_type(problem_type)
    
    # Generate solution
    print(f"\nGenerating solution for: {problem}")
    solution, time_taken = generate_derivative(problem, problem_type)
    
    # Record metrics
    monitor.record_response_time("model", time_taken)
    monitor.record_success("model", not solution.startswith("Error"))
    
    # Format output with step-by-step explanation
    output = f"""Generated solution: {solution}

Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {solution}"""
    
    # Get updated statistics
    stats = monitor.get_statistics()
    
    # Format statistics for display
    stats_display = f"""
### Performance Metrics

#### Response Times
- Average: {stats.get('model_avg_response_time', 0):.2f} seconds

#### Success Rate
- {stats.get('model_success_rate', 0):.1f}%

#### Problem Types Used
"""
    for ptype, percentage in stats.get('problem_type_distribution', {}).items():
        stats_display += f"- {ptype}: {percentage:.1f}%\n"
    
    return output, stats_display

# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
    gr.Markdown("# Mathematics Problem Solver")
    gr.Markdown("Using our fine-tuned model to solve mathematical problems")
    
    with gr.Row():
        with gr.Column():
            problem_type = gr.Dropdown(
                choices=["Addition", "Root Finding", "Derivative", "Custom"],
                value="Derivative",
                label="Problem Type"
            )
            problem_input = gr.Textbox(
                label="Enter your problem",
                placeholder="Example: x^2 + 3x"
            )
            solve_btn = gr.Button("Solve", variant="primary")
    
    with gr.Row():
        solution_output = gr.Textbox(
            label="Solution with Steps",
            lines=6
        )
    
    # Performance metrics display
    with gr.Row():
        metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
    
    # Example problems
    gr.Examples(
        examples=[
            ["x^2 + 3x", "Derivative"],
            ["144", "Root Finding"],
            ["235 + 567", "Addition"],
            ["\\sin{\\left(x\\right)}", "Derivative"],
            ["e^x", "Derivative"],
            ["\\frac{1}{x}", "Derivative"],
            ["x^3 + 2x", "Derivative"],
            ["\\cos{\\left(x^2\\right)}", "Derivative"]
        ],
        inputs=[problem_input, problem_type],
        outputs=[solution_output, metrics_display],
        fn=solve_problem,
        cache_examples=True,
    )
    
    # Connect the interface
    solve_btn.click(
        fn=solve_problem,
        inputs=[problem_input, problem_type],
        outputs=[solution_output, metrics_display]
    )

if __name__ == "__main__":
    demo.launch()