Spaces:
Sleeping
Sleeping
File size: 5,174 Bytes
77a8694 360349c 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 dcd4f06 77a8694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from monitoring import PerformanceMonitor, measure_time
# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
# Initialize performance monitor
monitor = PerformanceMonitor()
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token
print("Loading base model...")
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
torch_dtype=torch.float16
)
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
model.eval()
def format_prompt(problem: str, problem_type: str) -> str:
"""Format input prompt for the model"""
if problem_type == "Derivative":
return f"""Given a mathematical function, find its derivative.
Function: {problem}
The derivative of this function is:"""
elif problem_type == "Addition":
return f"""Solve this addition problem.
Problem: {problem}
The solution is:"""
else: # Roots or Custom
return f"""Find the derivative of this function.
Function: {problem}
The derivative is:"""
@measure_time
def generate_derivative(problem: str, problem_type: str, max_length: int = 200) -> str:
"""Generate derivative for a given function"""
# Format the prompt
prompt = format_prompt(problem, problem_type)
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
temperature=0.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode and extract derivative
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
derivative = generated[len(prompt):].strip()
return derivative
def solve_problem(problem: str, problem_type: str) -> tuple:
"""Solve problem and format output"""
if not problem:
return "Please enter a problem", None
# Record problem type
monitor.record_problem_type(problem_type)
# Generate solution
print(f"\nGenerating solution for: {problem}")
solution, time_taken = generate_derivative(problem, problem_type)
# Record metrics
monitor.record_response_time("model", time_taken)
monitor.record_success("model", not solution.startswith("Error"))
# Format output with step-by-step explanation
output = f"""Generated solution: {solution}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {solution}"""
# Get updated statistics
stats = monitor.get_statistics()
# Format statistics for display
stats_display = f"""
### Performance Metrics
#### Response Times
- Average: {stats.get('model_avg_response_time', 0):.2f} seconds
#### Success Rate
- {stats.get('model_success_rate', 0):.1f}%
#### Problem Types Used
"""
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
stats_display += f"- {ptype}: {percentage:.1f}%\n"
return output, stats_display
# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
gr.Markdown("# Mathematics Problem Solver")
gr.Markdown("Using our fine-tuned model to solve mathematical problems")
with gr.Row():
with gr.Column():
problem_type = gr.Dropdown(
choices=["Addition", "Root Finding", "Derivative", "Custom"],
value="Derivative",
label="Problem Type"
)
problem_input = gr.Textbox(
label="Enter your problem",
placeholder="Example: x^2 + 3x"
)
solve_btn = gr.Button("Solve", variant="primary")
with gr.Row():
solution_output = gr.Textbox(
label="Solution with Steps",
lines=6
)
# Performance metrics display
with gr.Row():
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
# Example problems
gr.Examples(
examples=[
["x^2 + 3x", "Derivative"],
["144", "Root Finding"],
["235 + 567", "Addition"],
["\\sin{\\left(x\\right)}", "Derivative"],
["e^x", "Derivative"],
["\\frac{1}{x}", "Derivative"],
["x^3 + 2x", "Derivative"],
["\\cos{\\left(x^2\\right)}", "Derivative"]
],
inputs=[problem_input, problem_type],
outputs=[solution_output, metrics_display],
fn=solve_problem,
cache_examples=True,
)
# Connect the interface
solve_btn.click(
fn=solve_problem,
inputs=[problem_input, problem_type],
outputs=[solution_output, metrics_display]
)
if __name__ == "__main__":
demo.launch()
|