File size: 1,014 Bytes
8adfb6d
6e22c6a
 
8adfb6d
6e22c6a
28f5dc9
6e22c6a
 
6b12563
6e22c6a
 
ede734c
a7b8d2d
6e22c6a
 
 
 
 
 
 
 
 
 
 
a7b8d2d
8adfb6d
6e22c6a
 
 
 
 
 
d0acbbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import AutoModelForImageClassification, AutoTokenizer
from PIL import Image

# Load Hugging Face model and tokenizer
model_name = 'ImageDifferentiator.pkl'  # Replace with the specific model name
model = AutoModelForImageClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Get class labels from the model configuration
labels = model.config.id2label

def predict(img):
    # Tokenize and preprocess the image
    inputs = tokenizer(img, return_tensors="pt")

    # Make prediction using the Hugging Face model
    outputs = model(**inputs)
    logits = outputs.logits

    # Get class probabilities
    probs = torch.nn.functional.softmax(logits, dim=-1)[0].tolist()

    # Create result dictionary
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

iface = gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(shape=(512, 512)),
    outputs=gr.outputs.Label(num_top_classes=3)
)

iface.launch(share=True)